Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Thermoelectric Power of Ion Exchange Membrane Cells Relevant to Reverse Electrodialysis Plants

dc.contributor.authorKristiansen, Kim R.
dc.contributor.authorBarragán García, Vicenta María
dc.contributor.authorKjelstrup, Signe
dc.date.accessioned2023-06-17T13:24:29Z
dc.date.available2023-06-17T13:24:29Z
dc.date.issued2019-04-12
dc.descriptionThe authors are grateful to the Research Council of Norway through its Centers of Excellence funding scheme, project number 262644, PoreLab. Anders Granli Haraldsen is thanked for his contribution to the RED cell measurements.
dc.description.abstractA thermoelectric cell is designed and experiments are carried out in order to measure Seebeck coefficients of ion exchange membranes at different constant concentrations of NaCl in water. The purpose of the investigation is to explore how a temperature gradient may be applied to increase the efficiency of saline power plants, in particular, of the process of reverse electrodialysis (RED). To evaluate measurements and RED applications, we derive an expression for the thermoelectric potential for a cell with a single membrane and for a RED unit cell. The Seebeck coefficient is interpreted in terms of the Peltier heat of the cell, and further expressed in terms of transported entropies. We find the Seebeck coefficient of the cell, after correcting for temperature polarization, by gradually increasing the membrane thickness. The contribution to the Seebeck coefficient from the membrane varied between 1.41 and 0.98 mV/K in FUMASEP FKS-PET-75 cation exchange membranes, and between 0.56 and 0.48 mV/K in FUMASEP FAD-PET-75 anion exchange membranes. The precision in the results is 1%, for NaCl concentrations between 0.03 and 0.60 mol/kg. Measurements on the RED unit cell with water samples taken from realistic fresh- and salt-water sources confirmed that a temperature difference has a significant effect, increasing the emf by 1.3% per kelvin of temperature difference.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipResearch Council of Norway through its Centers of Excellence funding scheme, PoreLab
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/55744
dc.identifier.doi10.1103/PhysRevApplied.11.044037
dc.identifier.issn2331-7019
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevApplied.11.044037
dc.identifier.relatedurlhttps://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/13394
dc.issue.number4
dc.journal.titlePhysical review applied
dc.language.isoeng
dc.publisherAmer Physical Soc
dc.relation.projectID262644
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu536
dc.subject.keywordTransported entropy
dc.subject.keywordCharged membranes
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleThermoelectric Power of Ion Exchange Membrane Cells Relevant to Reverse Electrodialysis Plants
dc.typejournal article
dc.volume.number11
dspace.entity.typePublication
relation.isAuthorOfPublicationd2c307ae-39ce-419e-a520-2e71b0d84e09
relation.isAuthorOfPublication.latestForDiscoveryd2c307ae-39ce-419e-a520-2e71b0d84e09

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Barragán39libre.pdf
Size:
789.37 KB
Format:
Adobe Portable Document Format

Collections