Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Multiparticle emission in the decay of Ar-31

dc.contributor.authorFraile Prieto, Luis Mario
dc.contributor.authorPicado, E.
dc.date.accessioned2023-06-19T13:32:18Z
dc.date.available2023-06-19T13:32:18Z
dc.date.issued2014-06-25
dc.description© 2014 American Physical Society. We thank Marek Pfutzner for helpful discussion and ¨ input on the analysis of the β3p-decay of 31Ar. This work was supported by the European Union Seventh Framework through ENSAR (Contract No. 262010). This work was partly supported by the Spanish Funding Agency under Projects No. FPA2009-07387, No. FPA2010-17142, and No. AIC-D-2011- 0684, by the French ANR (Contract No. ANR-06-BLAN- 0320), and by Region Aquitaine. A.S. acknowledges support ´ from the Jenny and Antti Wihuri Foundation.
dc.description.abstractA multihit capacity setup was used to study the decay of the dripline nucleus 31Ar, produced at the ISOLDE facility at CERN. A spectroscopic analysis of the β-delayed three-proton decay of 31Ar is presented for the first time together with a quantitative analysis of the β-delayed 2pγ decay. A new method for determination of the spin of low-lying levels in the βp daughter 30S using proton-proton angular correlations is presented and used to determine that the spin of the 5.2-MeV level is most likely 3+ with 4+ also possible. The half-life of 31Ar is found to be 15.1(3) ms. An improved analysis of the Fermi β strength including the β3p-decay mode gives a total measured branching ratio of 3.60(44)%, which is lower than the theoretical value found to be 4.24(43)%. Finally, a previously unidentified γ transition from the isobaric analog state in the decay of 33Ar has been found.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Union Seventh Framework through ENSAR
dc.description.sponsorshipSpanish Funding Agency
dc.description.sponsorshipFrench ANR
dc.description.sponsorshipJenny and Antti Wihuri Foundation
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29455
dc.identifier.doi10.1103/PhysRevC.89.064315
dc.identifier.issn0556-2813
dc.identifier.officialurlhttp:\\dx.doi.org\10.1103/PhysRevC.89.064315
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33966
dc.issue.number6
dc.journal.titlePhysical review C
dc.language.isoeng
dc.publisherAmer Physical Soc
dc.relation.projectID262010
dc.relation.projectIDFPA2009-07387
dc.relation.projectIDFPA2010-17142
dc.relation.projectIDAIC-D-2011- 0684
dc.relation.projectIDANR-06-BLAN- 0320
dc.rights.accessRightsopen access
dc.subject.cdu539.1
dc.subject.keywordProton emission
dc.subject.keywordBeta-decay
dc.subject.keywordNuclei.
dc.subject.ucmFísica nuclear
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleMultiparticle emission in the decay of Ar-31
dc.typejournal article
dc.volume.number89
dcterms.references[1] M. Pfützner, et al., Rev. Mod. Phys., 84, 567 (2012). [2] M. Borge, et al., Nucl. Phys. A, 515, 21 (1990). [3] V. Borrel, et al., Nucl. Phys. A, 473, 331 (1987). [4] L. Axelsson, et al., Nucl. Phys. A, 628, 345 (1998). [5] H. O. U. Fynbo, et al., Nucl. Phys. A, 677, 38 (2000). [6] B. A. Brown, Phys. Rev. Lett., 65, 2753 (1990). [7] K. Miernik, et al., Phys. Rev. C, 76, 041304 (2007). [8] M. Pomorski, et al., Phys. Rev. C, 83, 014306 (2011). [9] L. Audirac, et al., Eur. Phys. J. A, 48, 179 (2012). [10] M. Pfützner, et al., GSI-SR2012-PHN-ENNA-EXP-17, GSI Report 2013-1 (2012). [11] G. T. Koldste, et al., Phys. Rev. C, 87, 055808 (2013). [12] K. Setoodehnia, et al., Phys. Rev. C, 87, 065801 (2013). [13] G. T. Koldste, et al. [Phys. Lett. B, (to be published)] (2014), arXiv:1404.2143 [nucl-ex]. [14] E. Kugler, Hyperfine Interact., 129, 23 (2000). [15] L. Penescu, et al., Rev. Sci. Instrum., 81, 02A906 (2010). [16] I. Matea, et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 607, 576 (2009). [17] N. Warr, et al., Eur. Phys. J. A, 49, 40 (2013). [18] K. Debertin, R. G. Helmer, Gamma- and X-ray Spectrometry with Semiconductor Detectors (North-Holland, Amsterdam, 1988). [19] J. G. Johansen, et al., Phys. Rev. C, 88, 044619 (2013). [20] D. C. Radford, Nucl. Instrum. Methods Phys. Res., Sect. A, 361, 297 (1995). [21] L. Axelsson, et al., Nucl. Phys. A, 634, 475 (1998). [22] D. Bazin, et al., Phys. Rev. C, 45, 69 (1992). [23] H. O. U. Fynbo, et al., (the ISOLDE Collaboration), Phys. Rev. C, 59, 2275 (1999). [24] M. S. Basunia, Nucl. Data Sheets, 113, 909 (2012). [25] Y. H. Lam, et al., At. Data Nucl. Data Tables, 99, 680 (2013). [26] M. Bhattacharya, et al., Phys. Rev. C, 77, 065503 (2008). [27] M. Wang, et al., Chin. Phys. C, 36, 1603 (2012). [28] A. Saastamoinen, Ph.D. thesis, University of Jyväskylä, 2011. [29] G. Lotay, et al., Phys. Rev. C, 86, 042801 (2012). [30] S. Almaraz-Calderón, et al., Phys. Rev. C, 86, 065805 (2012). [31] W. A. Richter, B. A. Brown, Phys. Rev. C, 87, 065803 (2013). [32] L. C. Biedenharn, M. E. Rose, Rev. Mod. Phys., 25, 729 (1953). [33] R. B. D’Agostino, M. A. Stephens, Goodness-of-Fit Techniques (Dekker, New York, 1986). [34] N. Adimi, et al., Phys. Rev. C, 81, 024311 (2010). [35] M. J. G. Borge, et al., Phys. Scr., 36, 218 (1987). [36] H. S. Wilson, R. W. Kavanagh, F. M. Mann, Phys. Rev. C, 22, 1696 (1980).
dspace.entity.typePublication
relation.isAuthorOfPublicationec83106c-33f4-426c-afd6-68c5d859f9d4
relation.isAuthorOfPublication.latestForDiscoveryec83106c-33f4-426c-afd6-68c5d859f9d4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Art. 118.pdf
Size:
831.77 KB
Format:
Adobe Portable Document Format

Collections