Focal loci in G(1,N)
dc.contributor.author | Arrondo Esteban, Enrique | |
dc.contributor.author | Bertolini, Marina | |
dc.contributor.author | Turrini, Cristina | |
dc.date.accessioned | 2023-06-20T09:32:02Z | |
dc.date.available | 2023-06-20T09:32:02Z | |
dc.date.issued | 2005-12 | |
dc.description.abstract | We introduce the different focal loci (focal points, planes and hyperplanes) of (n - 1)-dimensional families (congruences) of lines in P-n and study their invariants, geometry and the relation among them. We also study some particular congruences whose focal loci have special behaviour, namely (n - 1)-secant lines to an (n - 2)-fold and (n - 1)-tangent lines to a hypersurface. In case n = 4 we also give, under some smoothness assumptions, a classification result for these congruences. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/14822 | |
dc.identifier.issn | 1093-6106 | |
dc.identifier.officialurl | http://intlpress.com/AJM/p/2005/9_4/AJM-9-4-449-472.pdf | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/49831 | |
dc.issue.number | 4 | |
dc.journal.title | Asian journal of mathematics | |
dc.language.iso | eng | |
dc.page.final | 472 | |
dc.page.initial | 449 | |
dc.publisher | International Press | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.7 | |
dc.subject.keyword | Focal locus | |
dc.subject.keyword | congruence | |
dc.subject.keyword | Grassmannian of lines | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Focal loci in G(1,N) | |
dc.type | journal article | |
dc.volume.number | 9 | |
dcterms.references | [1] E. Arrondo, Projections on Grassmannians of lines and characterization of Veronese vari- eties, J. Algebraic Geom., 8:50 (1999), pp. 85–101. [2] E. Arrondo, Line congruences of low order, Milan Journal of Math., 70 (2002), pp. 223–243. [3] E. Arrondo, M. Bertolini and C. Turrini, Classification of smooth congruences with a fundamental curve, Projective Geometry with applications, Number 166 in LN. Marcel Dekker, 1994. [4] E. Arrondo, M. Bertolini and C. Turrini, A focus on focal surfaces, Asian J. of Math., 5:3 (2001), pp. 535–560. [5] M. Bertolini and C. Turrini, Surfaces in P4 with no quadrisecant lines, Beitrage zur Algebra und Geometrie, 39 (1998), pp. 31–36. [6] C. Ciliberto and E. Sernesi, Singularities of the theta divisor and congruences of planes, Journal of Alg. Geom., 1:2 (1992), pp. 231–250. [7] N. Goldstein, The geometry of surfaces in the 4-quadric, Rend. Sem. Mat. Univers. Politecn. Torino, 43:3 (1985), pp. 467–499. [8] R. Hartshorne, Algebraic Geometry, Number 52 in GTM. Springer Verlag, New York - Hei- delberg - Berlin, 1977. [9] S. Katz and S.A. Strømme, schubert, a Maple package for intersection theory, available at http://www.mi.uib.no/schubert/. [10] E.L. Livorni, On the existence of some surfaces, Algebraic Geometry Proc., Number 1417 Springer Verlag, New York - Heidelberg - Berlin, 1977, pp. 155–179. [11] P. Le Barz, Validit´e de certaines formules de g´eom´etrie enumerative, C. R. Acad. Sc. Paris, 289 (1979), pp. 755–758. [12] P. Le Barz, Formules pour les trisecantes des surfaces alg´ebriques, L’Enseignement Math´ematique, 33 (1987), pp. 1–66. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5bd88a9c-e3d0-434a-a675-3221b2fde0e4 | |
relation.isAuthorOfPublication.latestForDiscovery | 5bd88a9c-e3d0-434a-a675-3221b2fde0e4 |
Download
Original bundle
1 - 1 of 1