Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Focal loci in G(1,N)

dc.contributor.authorArrondo Esteban, Enrique
dc.contributor.authorBertolini, Marina
dc.contributor.authorTurrini, Cristina
dc.date.accessioned2023-06-20T09:32:02Z
dc.date.available2023-06-20T09:32:02Z
dc.date.issued2005-12
dc.description.abstractWe introduce the different focal loci (focal points, planes and hyperplanes) of (n - 1)-dimensional families (congruences) of lines in P-n and study their invariants, geometry and the relation among them. We also study some particular congruences whose focal loci have special behaviour, namely (n - 1)-secant lines to an (n - 2)-fold and (n - 1)-tangent lines to a hypersurface. In case n = 4 we also give, under some smoothness assumptions, a classification result for these congruences.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14822
dc.identifier.issn1093-6106
dc.identifier.officialurlhttp://intlpress.com/AJM/p/2005/9_4/AJM-9-4-449-472.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49831
dc.issue.number4
dc.journal.titleAsian journal of mathematics
dc.language.isoeng
dc.page.final472
dc.page.initial449
dc.publisherInternational Press
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keywordFocal locus
dc.subject.keywordcongruence
dc.subject.keywordGrassmannian of lines
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleFocal loci in G(1,N)
dc.typejournal article
dc.volume.number9
dcterms.references[1] E. Arrondo, Projections on Grassmannians of lines and characterization of Veronese vari- eties, J. Algebraic Geom., 8:50 (1999), pp. 85–101. [2] E. Arrondo, Line congruences of low order, Milan Journal of Math., 70 (2002), pp. 223–243. [3] E. Arrondo, M. Bertolini and C. Turrini, Classification of smooth congruences with a fundamental curve, Projective Geometry with applications, Number 166 in LN. Marcel Dekker, 1994. [4] E. Arrondo, M. Bertolini and C. Turrini, A focus on focal surfaces, Asian J. of Math., 5:3 (2001), pp. 535–560. [5] M. Bertolini and C. Turrini, Surfaces in P4 with no quadrisecant lines, Beitrage zur Algebra und Geometrie, 39 (1998), pp. 31–36. [6] C. Ciliberto and E. Sernesi, Singularities of the theta divisor and congruences of planes, Journal of Alg. Geom., 1:2 (1992), pp. 231–250. [7] N. Goldstein, The geometry of surfaces in the 4-quadric, Rend. Sem. Mat. Univers. Politecn. Torino, 43:3 (1985), pp. 467–499. [8] R. Hartshorne, Algebraic Geometry, Number 52 in GTM. Springer Verlag, New York - Hei- delberg - Berlin, 1977. [9] S. Katz and S.A. Strømme, schubert, a Maple package for intersection theory, available at http://www.mi.uib.no/schubert/. [10] E.L. Livorni, On the existence of some surfaces, Algebraic Geometry Proc., Number 1417 Springer Verlag, New York - Heidelberg - Berlin, 1977, pp. 155–179. [11] P. Le Barz, Validit´e de certaines formules de g´eom´etrie enumerative, C. R. Acad. Sc. Paris, 289 (1979), pp. 755–758. [12] P. Le Barz, Formules pour les trisecantes des surfaces alg´ebriques, L’Enseignement Math´ematique, 33 (1987), pp. 1–66.
dspace.entity.typePublication
relation.isAuthorOfPublication5bd88a9c-e3d0-434a-a675-3221b2fde0e4
relation.isAuthorOfPublication.latestForDiscovery5bd88a9c-e3d0-434a-a675-3221b2fde0e4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
13.pdf
Size:
270 KB
Format:
Adobe Portable Document Format

Collections