Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Detecting Structural Changes in Time Series by Using the BDS Test Recursively: An Application to COVID-19 Effects on International Stock Markets

dc.contributor.authorEscot Mangas, Lorenzo
dc.contributor.authorSandubete, Julio E.
dc.contributor.authorPietrych, Łukasz
dc.date.accessioned2024-02-06T09:23:29Z
dc.date.available2024-02-06T09:23:29Z
dc.date.issued2023-12-01
dc.description.abstractStructural change tests aim to identify evidence of a structural break or change in the underlying generating process of a time series. The BDS test has its origins in chaos theory and seeks to test, using the correlation integral, the hypothesis that a time series is generated by an identically and independently distributed (IID) stochastic process over time. The BDS test is already widely used as a powerful tool for testing the hypothesis of white noise in the residuals of time series models. In this paper, we illustrate how the BDS test can be implemented also in a recursive manner to evaluate the hypothesis of structural change in a time series, taking advantage of its ability to test the IID hypothesis. We apply the BDS test repeatedly, starting with a sub-sample of the original time series and incrementally increasing the number of observations until it is applied to the full sample time series. A structural change in the unknown underlying generator model is detected when a change in the trend shown by this recursively computed BDS statistic is detected. The strength of this recursive BDS test lies in the fact that it does not require making any assumptions about the underlying time series generator model. We ilustrate the power and potential of this recursive BDS test through an application to real economic data. In this sense, we apply the test to assess the structural changes caused by the COVID-19 pandemic in international financial markets. Using daily data from the world’s top stock indices, we have detected strong and statistically significant evidence of two major structural changes during the period from June 2018 to June 2022. The first occurred in March 2020, coinciding with the onset of economic restrictions in the main Western countries as a result of the pandemic. The second occurred towards the end of August 2020, with the end of the main economic restrictions and the beginning of a new post-pandemic economic scenario. This methodology to test for structural changes in a time series is easy to implement and can detect changes in any system or process behind the time series even when this generating system is not known, and without the need to specify or estimate any a priori generating model. In this sense, the recursive BDS test could be incorporated as an initial preliminary step to any exercise of time series modeling. If a structural change is detected in a time series, rather than estimating a single predictive model for the full-sample time series, efforts should be made to estimate different predictive models, one for the time before and one for the time after the detected structural change.en
dc.description.departmentDepto. de Economía Aplicada, Pública y Política
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.sponsorshipGobierno de España
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.identifier.citationEscot, L.; Sandubete, J.E.; Pietrych, Ł. Detecting Structural Changes in Time Series by Using the BDS Test Recursively: An Application to COVID-19 Effects on International Stock Markets. Mathematics 2023, 11, 4843. https://doi.org/10.3390/math11234843
dc.identifier.doi10.3390/math11234843
dc.identifier.issn2227-7390
dc.identifier.officialurlhttps://doi.org/10.3390/math11234843
dc.identifier.relatedurlhttps://www.mdpi.com/2227-7390/11/23/4843
dc.identifier.urihttps://hdl.handle.net/20.500.14352/99306
dc.issue.number23
dc.journal.titleMathematics
dc.language.isoeng
dc.page.initial4843
dc.publisherMDPI
dc.relation.projectIDRTI2018-094901-B-I00
dc.relation.projectIDUCM - GRFN3223
dc.relation.projectIDAyuda Grupos FEE grant RG2023
dc.rightsAttribution-NonCommercial 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.cdu330.43
dc.subject.jelC01
dc.subject.jelC22
dc.subject.jelG15
dc.subject.keywordEconomic dynamics
dc.subject.keywordTime series structural change
dc.subject.keywordRecursive BDS test
dc.subject.keywordCOVID-19 pandemic
dc.subject.keywordWorld stock financial indices
dc.subject.ucmEstadística aplicada
dc.subject.ucmEconometría (Estadística)
dc.subject.ucmEconometría (Economía)
dc.subject.ucmMercados bursátiles y financieros
dc.subject.unesco1209.03 Análisis de Datos
dc.subject.unesco1209.15 Series Temporales
dc.subject.unesco5302.05 Series Cronológicas Económicas
dc.subject.unesco5302 Econometría
dc.titleDetecting Structural Changes in Time Series by Using the BDS Test Recursively: An Application to COVID-19 Effects on International Stock Marketsen
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number11-2023
dspace.entity.typePublication
relation.isAuthorOfPublicationd7f5bd78-98f7-44ac-b4b5-df58a4ed3f84
relation.isAuthorOfPublication.latestForDiscoveryd7f5bd78-98f7-44ac-b4b5-df58a4ed3f84

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2023_mathematics-11-04843.pdf
Size:
4.87 MB
Format:
Adobe Portable Document Format

Collections