Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

EMINENT: Embarrassingly parallel mutation testing

dc.conference.date6-8 Jun 2016
dc.conference.placeSan diego, USA
dc.conference.titleInternational Conference on Computational Science
dc.contributor.authorCerro Cañizares, Pablo
dc.contributor.authorNúñez Covarrubias, Alberto
dc.contributor.authorGarcía Merayo, María De Las Mercedes
dc.date.accessioned2025-01-29T15:07:37Z
dc.date.available2025-01-29T15:07:37Z
dc.date.issued2016-06-06
dc.description.abstractDuring the last decade, the fast evolution in communication networks has facilitated the development of complex applications that manage vast amounts of data, like Big Data applications. Unfortunately, the high complexity of these applications hampers the testing process. Moreover, generating adequate test suites to properly check these applications is a challenging task due to the elevated number of potential test cases. Mutation testing is a valuable technique to measure the quality of the selected test suite that can be used to overcome this difficulty. However, one of the main drawbacks of mutation testing lies on the high computational cost associated to this process. In this paper we propose a dynamic distributed algorithm focused on HPC systems, called EMINENT, which has been designed to face the performance problems in mutation testing techniques. EMINENT alleviates the computational cost associated with this technique since it exploits parallelism in cluster systems to reduce the final execution time. In addition, several experiments have been carried out on three applications in order to analyse the scalability and performance of EMINENT. The results show that EMINENT provides an increase in the speed-up in most scenarios.
dc.description.departmentDepto. de Sistemas Informáticos y Computación
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipSpanish MINECO
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.identifier.doi10.1016/J.PROCS.2016.05.298
dc.identifier.officialurlhttps://doi.org/10.1016/J.PROCS.2016.05.298
dc.identifier.urihttps://hdl.handle.net/20.500.14352/116959
dc.language.isoeng
dc.page.final73
dc.page.initial63
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//TIN2015-65845-C3-1-R/ES/DESARROLLO Y ANALISIS FORMAL DE SISTEMAS COMPLEJOS EN CONTEXTOS DISTRIBUIDOS: FUNDAMENTOS, HERRAMIENTAS Y APLICACIONES/
dc.relation.projectIDS2013/ICE-3006
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.keywordMutation testing
dc.subject.keywordScientific Computing
dc.subject.keywordParallel and Distributed Computing
dc.subject.ucmSoftware
dc.subject.ucmProgramación de ordenadores (Informática)
dc.subject.unesco1207 Investigación Operativa
dc.titleEMINENT: Embarrassingly parallel mutation testing
dc.typeconference paper
dc.type.hasVersionAM
dspace.entity.typePublication
relation.isAuthorOfPublicationfbd86834-ee36-422f-b303-b72800b228f1
relation.isAuthorOfPublication739c7331-24ad-41a6-8f5b-873485fa4501
relation.isAuthorOfPublication28ca46b8-d1eb-42e6-a6e2-f31b193b055b
relation.isAuthorOfPublication.latestForDiscoveryfbd86834-ee36-422f-b303-b72800b228f1

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
EMINENT.pdf
Size:
282.56 KB
Format:
Adobe Portable Document Format

Collections