Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Fuzzy multi-criteria decision making in stereovision matching for fish-eye lenses in forest analysis

dc.book.titleIntelligent Data Engineering and Automated Learning, Proceedings
dc.contributor.authorHerrera Caro, Pedro Javier
dc.contributor.authorPajares Martínsanz, Gonzalo
dc.contributor.authorGuijarro Mata-García, María
dc.contributor.authorRuz Ortiz, José Jaime
dc.contributor.authorCruz García, Jesús Manuel de la
dc.date.accessioned2023-06-20T13:39:58Z
dc.date.available2023-06-20T13:39:58Z
dc.date.issued2009
dc.description© Springer-Verlag Berlin Heidelberg 2009. The authors wish to acknowledge to the Council of Education of the Autonomous Community of Madrid and the Social European Fund for the contract with the first author. Also to the Dra. I. Cañellas and F. Montes from the Forest Research Centre for his support and the material supplied. To the DPI2006-15661-C02-01 project. International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2009) (10th. sep 23-26, 2009. Burgos, España)
dc.description.abstractThis paper describes a novel stereovision matching approach based on omni-directional images obtained with fish-eye lenses in forest environments. The goal is to obtain a disparity map as a previous step for determining the volume of wood in the imaged area. The interest is focused oil the trunks of the trees. Due to the irregular distribution of the trunks, the most suitable features are the pixels. A set of six attributes is used for establishing the matching between the pixels in both images of each stereo pair analysed. The final decision about the matched pixels is taken based on a well tested FUZZY Multi-Criteria Decision Making approach, where the attributes determine the criteria and the potential matches in one image of the stereo pair for a given pixel in the other one determine the alternatives. The application of this decision making approach makes, the main finding of the paper. The full procedure is based on the application of three well known matching constraints. The proposed approach is compared favourably against the usage of simple features.
dc.description.departmentSección Deptal. de Arquitectura de Computadores y Automática (Físicas)
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCouncil of Education of the Autonomous Community of Madrid
dc.description.sponsorshipSocial European Fund
dc.description.sponsorshipForest Research Centre
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23094
dc.identifier.isbn978-3-642-04393-2
dc.identifier.officialurlhttp://link.springer.com/content/pdf/10.1007%2F978-3-642-04394-9_40.pdf
dc.identifier.relatedurlhttp://link.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/53291
dc.issue.number5788
dc.language.isoeng
dc.page.final332
dc.page.initial325
dc.publisherSpringer-Verlag Berlin
dc.relation.ispartofseriesLecture Notes in Computer Science
dc.relation.projectIDDPI2006-15661-C02-01
dc.rights.accessRightsopen access
dc.subject.cdu004
dc.subject.keywordFish-Eye Stereo Vision
dc.subject.keywordStereovision Matching
dc.subject.keywordOmni-Directional Forest Images
dc.subject.keywordFuzzy Multi-Criteria Decision Making
dc.subject.ucmInformática (Informática)
dc.subject.unesco1203.17 Informática
dc.titleFuzzy multi-criteria decision making in stereovision matching for fish-eye lenses in forest analysis
dc.typebook part
dcterms.references1. Barnard, S., Fishler, M.: Computational stereo. ACM Computing Surveys 14, 553–572 (1982) 2. Cochran, S.D., Medioni, G.: 3-D surface description from binocular stereo. IEEE Trans. Pattern Analysis and Machine Intelligence 14(10), 981–994 (1992) 3. Tang, L., Wu, C., Chen, Z.: Image dense matching based on region growth with adaptive window. Pattern Recognit. Letters 23, 1169–1178 (2002) 4. Lew, M.S., Huang, T.S., Wong, K.: Learning and feature selection in stereo matching. IEEE Trans. Pattern Anal. Machine Intell. 16, 869–881 (1994) 5. Abraham, S., Förstner, W.: Fish-eye-stereo calibration and epipolar rectification. Photogrammetry and Remote Sensing 59, 278–288 (2005) 6. Schwalbe, E.: Geometric modelling and calibration of fisheye lens camera systems. In: Proc. 2nd Panoramic Photogrammetry Workshop, Int. Archives of Photogrammetry and Remote Sensing, Part 5/W8, vol. 36 (2005) 7. Barnea, D.I., Silverman, H.F.: A class of algorithms for fast digital image registration. IEEE Trans. Computers 21, 179–186 (1972) 8. Pajares, G., de la Cruz, J.M.: Visión por Computador: Imágenes digitales y aplicaciones. RA-MA (2008) 9. Chen, C.T.: Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems 114, 1–9 (2000) 10. Wang, W., Fenton, N.: Risk and confidence analysis for fuzzy multi criteria decision making. Knowledge Based Systems 19, 430–437 (2006)
dspace.entity.typePublication
relation.isAuthorOfPublication878e090e-a59f-4f17-b5a2-7746bed14484
relation.isAuthorOfPublicationd5518066-7ea8-448c-8e86-42673e11a8ee
relation.isAuthorOfPublication59baddaa-b4d2-4f26-81a9-745602eb2b25
relation.isAuthorOfPublication.latestForDiscoveryd5518066-7ea8-448c-8e86-42673e11a8ee

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cruzgarcia16.pdf
Size:
315.96 KB
Format:
Adobe Portable Document Format