Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The Tjurina number for Sebastiani-Thom type isolated hypersurface singularities

dc.contributor.authorAlmirón, Patricio
dc.date.accessioned2023-06-17T08:28:00Z
dc.date.available2023-06-17T08:28:00Z
dc.date.issued2021
dc.description.abstractIn this note we provide a formula for the Tjurina number of a join of isolated hypersurface singularities in separated variables. From this we are able to provide a characterization of isolated hypersurface singularities whose difference between the Milnor and Tjurina numbers is less or equal than two arising as the join of isolated hypersurface singularities in separated variables. Also, we are able to provide new upper bounds for the quotient of Milnor and Tjurina numbers of certain join of isolated hypersurface singularities. Finally, we deduce an upper bound for the quotient of Milnor and Tjurina numbers in terms of the singularity index of any isolated hypersurface singularity, not necessarily a join of singularities.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedFALSE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.statusunpub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/72795
dc.identifier.urihttps://hdl.handle.net/20.500.14352/7205
dc.language.isoeng
dc.relation.projectIDMTM2016-76868-C2-1-P; PID2020-114750GB-C32
dc.rights.accessRightsopen access
dc.subject.cdu517.554
dc.subject.keywordSingularities of curves
dc.subject.keywordSingularities of surfaces
dc.subject.keywordLocal complex singularities
dc.subject.keywordHypersurface singularities
dc.subject.ucmFunciones (Matemáticas)
dc.subject.ucmGeometria algebraica
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleThe Tjurina number for Sebastiani-Thom type isolated hypersurface singularities
dc.typejournal article
dcterms.references[Alb+21] Maria Alberich-Carramiñana et al. “The minimal Tjurina number of irreducible germs of plane curve singularities”. In: Indiana Univ. Math. J. 70.4 (2021), pp. 1211–1220. [Alm19] Patricio Almirón. On the quotient of Milnor and Tjurina numbers for two-dimensional isolated hypersurface singularities. 2019. To appear in Mathematische Nachrichten, arXiv: math/1910.12843. [Dec+21] Wolfram Decker et al. SINGULAR 4-2-1 — A computer algebra system for polynomial computations. http://www.singular.uni-kl.de. 2021. [DG18] Alexandru Dimca and Gert-Martin Greuel. “On 1-forms on isolated complete intersection curve singularities”. In: J. Singul. 18 (2018), pp. 114–118. [Dur78] Alan H. Durfee. “The signature of smoothings of complex surface singularities”. In: Math. Ann. 232.1 (1978), pp. 85–98. [Her99] Claus Hertling. “Classifying spaces for polarized mixed Hodge structures and for Brieskorn lattices”. In: Compositio Math. 116.1 (1999), pp. 1–37. [HS99] Claus Hertling and Colin Stahlke. “Bernstein polynomial and Tjurina number”. In: Geom. Dedicata 75.2 (1999), pp. 137–176. [Jun+19] Seung-Jo Jung et al. Hodge ideals and spectrum of isolated hypersurface singularities. 2019. [Kul98] Valentine S. Kulikov. Mixed Hodge structures and singularities. Vol. 132. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1998, pp. xxii+186. [Liu18] Yongqiang Liu. “Milnor and Tjurina numbers for a hypersurface germ with isolated singularity”. In: C. R. Math. Acad. Sci. Paris 356.9 (2018), pp. 963–966. [MSS20] Laurentiu Maxim, Morihiko Saito, and Jörg Schürmann. “Thom-Sebastiani theorems for filtered D-modules and for multiplier ideals”. In: Int. Math. Res. Not. IMRN 1 (2020), pp. 91–111. [Mus02] Mircea Mustata. “The multiplier ideals of a sum of ideals”. In: Trans. Amer. Math. Soc. 354.1 (2002), pp. 205–217. [MY82] John N. Mather and Stephen S. T. Yau. “Classification of isolated hypersurface singularities by their moduli algebras”. In: Invent. Math. 69.2 (1982), pp. 243–251. [Sai71] Kyoji Saito. “Quasihomogene isolierte Singularitäten von Hyperflächen”. In: Invent. Math. 14 (1971), pp. 123–142. [Sai83a] Kyoji Saito. “The zeroes of characteristic function χf for the exponents of a hypersurface isolated singular point”. In: Algebraic varieties and analytic varieties (Tokyo, 1981). Vol. 1. Adv. Stud. Pure Math. North-Holland, Amsterdam, 1983, pp. 195–217. [Sai83b] Morihiko Saito. “On the exponents and the geometric genus of an isolated hypersurface singularity”. In: Singularities, Part 2 (Arcata, Calif., 1981). Vol. 40. Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, RI, 1983, pp. 465–472. [Sai89] Morihiko Saito. “On the structure of Brieskorn lattice”. In: Ann. Inst. Fourier (Grenoble) 39.1 (1989), pp. 27–72. [SB74] Henri Skoda and Joël Briançon. “Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de Cn”. In: C. R. Acad. Sci. Paris Sér. A 278 (1974), pp. 949–951. [Sch78] J. Scherk. “On the Gauss-Manin connection of an isolated hypersurface singularity”. In: Math. Ann. 238.1 (1978), pp. 23–32. [SS85] J. Scherk and J. H. M. Steenbrink. “On the mixed Hodge structure on the cohomology of the Milnor fibre”. In: Math. Ann. 271.4 (1985), pp. 641–665. [ST71] M. Sebastiani and R. Thom. “Un résultat sur la monodromie”. In: Invent. Math. 13 (1971), pp. 90–96. [Ste77] J. H. M. Steenbrink. “Mixed Hodge structure on the vanishing cohomology”. In: Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976). 1977, pp. 525–563. [Var81] A. N. Varcenko. “Asymptotic Hodge structure on vanishing cohomology”. In: Izv. Akad. Nauk SSSR Ser. Mat. 45.3 (1981), pp. 540–591, 688.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
almiron_thetjurina.pdf
Size:
114.49 KB
Format:
Adobe Portable Document Format

Collections