Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope

dc.contributor.authorAntoranz Canales, Pedro
dc.contributor.authorBarrio Uña, Juan Abel
dc.contributor.authorContreras González, José Luis
dc.contributor.authorFonseca González, María Victoria
dc.contributor.authorMiranda Pantoja, José Miguel
dc.contributor.authorNieto Castaño, Daniel
dc.date.accessioned2023-06-20T10:37:26Z
dc.date.available2023-06-20T10:37:26Z
dc.date.issued2008-10-16
dc.description© Elsevier Science. The MAGIC Collaboration thanks the IAC for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma and gratefully acknowledges the support of the German BMBF and MPG, the Italian INFN and the Spanish CICYT. This work was also supported by ETH Research Grant TH 34/04 3 and the Polish MNiI Grant 1P03D01028. The work of J.E. and N.E.M. was partially supported by the European Union through the Marie Curie Research and Training Network UniverseNet MRTN-CT-2006-035863, and that of D.V.N. by DOE grant DE-FG02-95ER40917.
dc.description.abstractWe analyze the timing of photons observed by the MAGIC telescope during a flare of the active galactic nucleus Mkn 501 for a possible correlation with energy, as suggested by some models of quantum gravity (QG), which predict a vacuum refractive index similar or equal to 1 + (E/M-QGn)(n), n = 1, 2. Parametrizing the delay between gamma-rays of different energies as Delta t = +/-tau E-1 or Delta t = +/-tau E-q(2), we find tau(1) = (0.030 +/- 0.012) s/GeV at the 2.5-sigma level, and tau(q) = (3.71 +/- 2.57) x 10(-6) s/GeV2, respectively. We use these results to establish lower limits M-QG1 > 0.21 X 10(18) GeV and M-QG2 > 0.26 x 10(11) GeV at the 95% C.L. Monte Carlo studies confirm the MAGIC sensitivity to propagation effects at these levels. Thermal plasma effects in the source are negligible, but we cannot exclude the importance of some other source effect. (C) 2008 Elsevier B.V. All rights reserved.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipGerman BMBF
dc.description.sponsorshipGerman MPG
dc.description.sponsorshipItalian INFN
dc.description.sponsorshipSpanish CICYT
dc.description.sponsorshipETH Research Grant TH
dc.description.sponsorshipPolish MNiI
dc.description.sponsorshipEuropean Union through the Marie Curie Research and Training Network UniverseNet
dc.description.sponsorshipDOE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23072
dc.identifier.doi10.1016/j.physletb.2008.08.053
dc.identifier.issn0370-2693
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.physletb.2008.08.053
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.relatedurlhttp://arxiv.org/abs/0708.2889
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50808
dc.issue.number4
dc.journal.titlePhysics Letters B
dc.language.isoeng
dc.page.final257
dc.page.initial253
dc.publisherElsevier Science BV
dc.relation.projectID34/04 3
dc.relation.projectID1P03D01028
dc.relation.projectIDMRTN-CT-2006-035863
dc.relation.projectIDDE-FG02-95ER40917
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.cdu539.1
dc.subject.keywordGamma-Ray Bursts
dc.subject.keywordString Theory
dc.subject.keywordLight
dc.subject.keywordScale
dc.subject.keywordEmission
dc.subject.keywordLimits
dc.subject.keywordSpeed
dc.subject.keywordModel
dc.subject.keywordTime.
dc.subject.ucmElectrónica (Física)
dc.subject.ucmElectricidad
dc.subject.ucmFísica nuclear
dc.subject.unesco2202.03 Electricidad
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleProbing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope
dc.typejournal article
dc.volume.number668
dcterms.references[1] G. Amelino-Camelia, J. Ellis, N. Mavromatos, D. Nanopoulos, S. Sarkar, Nature 393 (1998) 763. [2] G. Amelino-Camelia, J.R. Ellis, N.E. Mavromatos, D.V. Nanopoulos, Int. J. Mod. Phys. A 12 (1997) 607; J.R. Ellis, N.E. Mavromatos, D.V. Nanopoulos, Phys. Lett. B 293 (1992) 37; J.R. Ellis, N.E. Mavromatos, D.V. Nanopoulos, Erice Subnucl. Phys. Series 31 (1994) 1; J.R. Ellis, N.E. Mavromatos, D.V. Nanopoulos, Chaos Solitons Fractals 10 (1999) 345. [3] J.R. Ellis, N.E. Mavromatos, D.V. Nanopoulos, Phys. Lett. B 665 (2008) 412. [4] R. Gambini, J. Pullin, Phys. Rev. D 59 (1999) 124021. [5] J. Alfaro, H.A. Morales-Tecotl, L.F. Urrutia, Phys. Rev. D 65 (2002) 103509. [6] V.A. Kostelecky, S. Samuel, Phys. Rev. D 39 (1989) 683. [7] G. Amelino-Camelia, Int. J. Mod. Phys. D 11 (2002) 35. [8] R.C. Myers, M. Pospelov, Phys. Rev. Lett. 90 (2003) 211601. [9] S. Sarkar, Mod. Phys. Lett. A 17 (2002) 1025; L. Smolin, arXiv: hep-th/0303185; Y.J. Ng, Mod. Phys. Lett. A 18 (2003) 1073; T. Piran, Lect. Notes Phys. 669 (2005) 351; D. Mattingly, Living Rev. Rel. 8 (2005) 5. [10] J.R. Ellis, N.E. Mavromatos, D.V. Nanopoulos, A.S. Sakharov, Nature 428 (2004) 386. [11] M. Gogberashvili, A.S. Sakharov, E.K.G. Sarkisyan, Phys. Lett. B 644 (2007) 179. [12] J. Ellis, K. Farakos, N.E. Mavromatos, V.A. Mitsou, D.V. Nanopoulos, Astrophys. J. 535 (2000) 139. [13] P. Kaaret, Astron. Astrophys. 345 (1999) L32. [14] J.R. Ellis, N.E. Mavromatos, D.V. Nanopoulos, A.S. Sakharov, Astron. Astrophys. 402 (2003) 409. [15] J.R. Ellis, N.E. Mavromatos, D.V. Nanopoulos, A.S. Sakharov, E.K.G. Sarkisyan, Astropart. Phys. 25 (2006) 402. [16] J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, A.S. Sakharov, E.K.G. Sarkisyan, Astropart. Phys. 29 (2008) 158. [17] M. Rodríguez Martínez, T. Piran, Y. Oren, JCAP 0605 (2006) 017. [18] S.D. Biller, et al., Phys. Rev. Lett. 83 (1999) 2108. [19] O. Blanch, J. López, M. Martínez, Astropart. Phys. 19 (2003) 245. [20] R.J. Gleiser, C.N. Kozameh, Phys. Rev. D 64 (2001) 083007. [21] Y.Z. Fan, D.M. Wei, D. Xu, Mon. Not. R. Astron. Soc. 376 (2007) 1857. [22] E. Lorenz, MAGIC Collaboration, New Astr. Rev. 48 (2005) 339. [23] J. Albert, et al., MAGIC Collaboration, Astrophys. J. 669 (2007) 862. [24] R.M. Wagner, et al., MAGIC Collaboration, in: Proceedings of 29th International Cosmic Ray Conference (Pune), 4 (2005) 163. [25] A.M. Hillas, in: Proceedings of 19th International Cosmic Ray Conference (La Jolla, 1985), 445. [26] J.D. Jackson, Classical Electrodynamics, John Wiley & Sons, Inc., 1975. [27] D.J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures, Chapman & Hall/CRC, 2007. [28] M. Martinez, M. Errando, arXiv: 0803.2120 [astro-ph], Nucl. Instrum. Methods A, submitted for publication. [29] J.I. Latorre, P. Pascual, R. Tarrach, Nucl. Phys. B 437 (1995) 60. [30] L. Anchordoqui, T. Paul, S. Reucroft, J. Swain, Int. J. Mod. Phys. A 18 (2003) 2229. [31] W. Bednarek, R.M. Wagner, Astron. Astrophys. 486 (2008) 679. [32] F. Aharonian, et al., H.E.S.S. Collaboration, Astrophys. J. 664 (2007) L71.
dspace.entity.typePublication
relation.isAuthorOfPublication6bc87e5f-9b77-4982-b112-0d4f8aa128d0
relation.isAuthorOfPublication11e5fd8b-1a86-4f8d-85c6-135541232be4
relation.isAuthorOfPublication6a14529e-a65e-4709-9bc1-61f9429841c1
relation.isAuthorOfPublication9f2c0e34-0edd-497a-bbd0-fbd9d348e85c
relation.isAuthorOfPublication328f9716-2012-44f9-aacc-ef8d48782a77
relation.isAuthorOfPublication60928160-a862-4814-a08f-4d80c6a1cdab
relation.isAuthorOfPublication.latestForDiscovery6bc87e5f-9b77-4982-b112-0d4f8aa128d0

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
MirandaJM51.pdf
Size:
266.03 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
MirandaJM51preprint.pdf
Size:
98.82 KB
Format:
Adobe Portable Document Format

Collections