Comparison of two different UV-grafted nanofiltration membranes prepared for reduction of humic acid fouling using acrylic acid and N-vinylpyrrolidone

Thumbnail Image
Full text at PDC
Publication Date
Abu Seman, M. N.
Hilal, N.
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Elsevier Science Bv
Google Scholar
Research Projects
Organizational Units
Journal Issue
UV-photografting using two different monomers, acrylic acid and N-vinylpyrrolidone, with different concentrations in an aqueous solution and various irradiation times were studied. Irreversible fouling of both the un-grafted polyethersulfone and the UV-grafted membranes have been studied using humic acid model solutions at two different pH values; 7 and 3. It was observed that the UV-grafted membranes exhibited practically less tendency to be irreversibly fouled by humic acid molecules at pH 7. However at the acidic condition of pH 3, some membranes exhibited a higher degree of fouling more than the un-grafted membrane, especially for membranes with higher roughness values. The smaller pore size generated after UV-grafting of polyethersulfone membrane did not significantly affect humic acid removal due to the larger humic acid molecular size.
© 2010 Elsevier B.V. We would like to thank the Ministry of Higher Education, Malaysia for supporting Mazrul Abu Seman's study. M. Khayet is thankful to the University Complutense of Madrid (UCM) for the grant.
UCM subjects
Unesco subjects
[1] I. Pinnau, B.D. Freeman, Formation and Modification of Polymeric Membranes: Overview, Membrane Formation and Modification, ACS Symposium Series, vol. 744, American Chemical Society, Washington DC, 2000, pp. 1–22. [2] W.J. Lau, A.F. Ismail, Theoretical studies on the morphological and electrical properties of blended PES/SPEEK nanofiltration membranes using different sulfonation degree of SPEEK, J. Membr. Sci. 334 (2009) 30–42. [3] W.R. Bowen, T.A. Doneva, H.B. Yin, Polysulfone-sulfonated poly(ether ether) ketone blend membranes: systematic synthesis and characterisation, J. Membr. Sci. 181 (2001) 253–263. [4] Q. Wei, J. Li, B. Qian, B. Fang, C. Zhao, Preparation, characterization and application of functional polyethersulfone membranes blended with poly (acrylic acid) gels, J. Membr. Sci. 337 (2009) 266–273. [5] J.A. Koehler, M. Ulbricht, G. Belfort, Intermolecular forces between proteins and polymer films with relevance to filtration, Langmuir 13 (15) (1997) 4162–4171. [6] T. Matsuura, Synthetic Membranes and Membrane Separation, CRC Press, Inc, Boca Raton, Fla, 1994, p. 467. [7] S.P. Nunes, K.V. Peinemann, Membrane Technology in the Chemical Industry, 2nd Ed., Wiley-VCH Verlag GmbH & Co. KGaA Weinheim, Germany, 20068 Revised and Extended Edition. [8] H. Susanto, H. Arafat, E.M.L. Janssen, M. Ulbricht, Ultrafiltration of polysaccharide– protein mixtures: elucidation of fouling mechanisms and fouling control by membrane surface modification, Sep. Purif. Technol. 63 (2008) 558–565. [9] A.H.M. Yusof, M. Ulbricht, Polypropylene-based membrane adsorbers via photoinitiated graft copolymerization: optimizing separation performance by preparation conditions, J. Membr. Sci. 311 (2008) 294–305. [10] M. Taniguchi, G. Belfort, Low protein fouling synthetic membranes by UV-assisted surface grafting modification: varying monomer type, J. Membr. Sci. 231 (2004) 147–157. [11] J. Pieracci, D.W. Wood, J.V. Crivello, G. Belfort, Increasing membrane permeability of UV-modified poly(ether sulfone) ultrafiltration membranes, J. Membr. Sci. 202 (2002) 1–16. [12] J. Pieracci, D.W. Wood, J.V. Crivello, G. Belfort, UV-assisted graft polymerization of N-vinyl-2-pyrrolidinone onto poly(ether sulfone) ultrafiltration membranes: comparison of dip versus immersion modification techniques, Chem. Mater. 12 (2000) 2123–2133. [13] J. Pieracci, D.W. Wood, J.V. Crivello, G. Belfort, Increasing membrane permeability of UV-modified poly(ether sulfone) ultrafiltration membranes, J. Membr. Sci. 156 (1999) 223–240. [14] C. Qiu, Q.T. Nguyen, Z. Ping, Surface modification of cardo polyetherketone ultrafiltration membrane by photo-grafted copolymers to obtain nanofiltration membranes, J. Membr. Sci. 295 (2007) 88–94. [15] C. Qiu, F. Xu, Q.T. Nguyen, Z. Ping, Nanofiltration membrane prepared b from cardo polyetherketone ultrafiltration membrane by UV-irradiated grafting method, J. Membr. Sci. 255 (2005) 107–115. [16] D.H. Lee, H.I. Kim, S.S. Kim, Surface modification of polymeric membranes by UV grafting. Advanced material for membrane separations. Chapter 19, ACS Symp. Ser. 876 (2004) 281–299. [17] M. Ulbricht, K. Richau, H. Kamusewitz, Chemically and morphologically defined ultrafiltration membrane surfaces prepared by heterogeneous photo-initiated graft polymerization, Colloids Surf. A Physicochem. Eng. Aspects 138 (1998) 353–366. [18] H. Yamagishi, J.V. Crivello, G. Belfort, Development of a novel photochemical technique for modifying poly(arylsulfone) ultrafiltration membranes, J. Membr. Sci. 105 (1995) 237–247. [19] H. Yamagishi, J.V. Crivello, G. Belfort, Evaluation of photochemically modified poly(arylsulfone) ultrafiltration membranes, J. Membr. Sci. 105 (1995) 249–259. [20] J.E. Kilduff, S. Mattaraj, J.P. Pieracci, G. Belfort, Photochemical modification of poly(ether sulfone) and sulfonated poly(sulfone) nanofiltration membranes for control of fouling by natural organic matter, Desalination 132 (2000) 133–142. [21] L. Puro, M. Manttari, A. Pihlajamaki, M. Nystrom, Characterization of modified nanofiltration membrane by octanoic acid permeation and FTIR analysis, Trans. IChemE A Chem. Eng. Res. Des. 84 (A2) (2006) 87–96 [22] M.N. Abu Seman, M. Khayet, Z.I. Bin Ali, N. Hilal, Reduction of nanofiltration membrane fouling by UV-initiated graft polymerization technique, J. Membr. Sci. 355 (2010) 133–141. [23] M. Khayet, M.N. Abu Seman, N. Hilal, Response surface modeling and optimization of composite nanofiltration modified membranes, J. Membr. Sci. 349 (2010) 113–122. [24] N. Hilal, W.R. Bowen, L. Alkhatib, O. Ogunbiyi, A review of atomic microscopy applied to cell interactions with membrane, Trans. IChemE A Chem. Eng. Res. Des. 84 (A4) (2006) 282–292. [25] W.R. Bowen, N. Hilal, R.W. Lovitt, C.J. Wright, Characterisation of membrane surfaces: direct measurement of biological adhesion using an atomic force microscope, J. Membr. Sci. 154 (1999) 205–212. [26] M. Mänttäri, L. Puro, J. Nuortila-Jokinen, M. Nyström, Fouling effects of polysaccharides and humic acid in nanofiltration, J. Membr. Sci. 165 (2000) 1–17. [27] M. Mänttäri, M. Nyström, Critical flux in NF of high molar mass polysaccharides and effluents from the paper industry, J. Membr. Sci. 170 (2000) 257–273. [28] S. Singh, K.C. Khulbe, T. Matsuura, P. Ramamurthy, Membrane characterization by solute transport and atomic force microscopy, J. Membr. Sci. 142 (1998) 117–127. [29] M. Khayet, T. Matsuura, Determination of surface and bulk pore sizes of flat-sheet and hollow-fiber membranes by atomic force microscopy, gas permeation and solute transport methods, Desalination 158 (2003) 57–64. [30] M. Khayet, C.Y. Feng, K.C. Khulbe, T. Matsuura, Preparation and characterization of polyvinylidene fluoride hollow fiber membranes for ultrafiltration, Polymer 43 (2002) 3879–3890. [31] M. Ishiguro, T. Matsuura, C.A. Detellier, Study on the solute separation and the pore size distribution of a Montmorillonite, Membr. Sep. Sci. Technol. 31 (1996) 545–556. [32] A.S. Michaels, Analysis and prediction of sieving curves for ultrafiltration membranes: a universal correlation? Sep. Sci. Technol. 15 (6) (1980) 1305–1322. [33] A.R. Cooper, D.S. Van Derveer, Characterization of ultrafiltration membranes by polymer transport measurements, Sep. Sci. Technol. 14 (1979) 551–556. [34] K.Y. Wang, T.S. Chung, The characterization of flat composite nanofiltration membranes and their applications in the separation of Cephalexin, J. Membr. Sci. 247 (2005) 37–50. [35] M. Ernst, A. Bismarck, J. Springer, M. Jekel, Zeta-potential and rejection rates of a polyethersulfone nanofiltration membrane in single salt solutions, J. Membr. Sci. 165 (2000) 251–259. [36] E.K. Solak, O. Sanli, Permeation and separation characteristics of dimethylformamide/water mixtures by vapour permeation and vapour permeation with temperature difference methods through a sodium alginate-g-n-vinyl-2-pyrrolidone membrane, Desalin.Water Treat. 2 (2009) 148–155. [37] L. Li-hua, D. Shan, T. Ye, T. Jin-huan, Z. Chang-ren, Surface modification of poly-D, L-lactic acid film with plasma graft polymerization, Tissue Eng. Res. Clin. Recovery 12 (2008) 1–10. [38] Boussu K. (2007) Influence of Membrane Characteristics on Flux Decline and Retention in Nanofiltration. PhD Thesis. Katholieke Universiteit Leuven. Belgium. [39] W.R. Bowen, A.W. Mohammad, Characterization and prediction of nanofiltration membrane performance — a general assessment, IChemE 76 (1998) 885–893, Part A. [40] J.E. Kilduff, S. Mattaraj, M. Zhou, G. Belfort, Kinetics of membrane flux decline: the role of natural colloids and mitigation via membrane surface modification, J. Nanopart. Res. 7 (2005) 525–544. [41] M. Taniguchi, J. Pieracci, W.A. Samsonoff, G. Belfort, UV-assisted graft polymerization of synthetic membranes: mechanistic studies, Chem. Mater. 15 (2003) 3805–3812. [42] B. Kaeselev, P. Kingshott, G. Jonsson, Influence of the surface structure on the filtration performance of UV-modified PES membranes, Desalination 146 (2002) 265–271. [43] M. Taniguchi, J.E. Kilduff, G. Belfort, Low fouling synthetic membranes by UVassisted graft polymerization: monomer selection to mitigate fouling by natural organic matter, J. Membr. Sci. 222 (2003) 59–70. [44] A.I. Schäfer, A.G. Fane, T.D. Waite, Nanofiltration of natural organic matter: removal, fouling and influence of multivalent ions, Desalination 118 (1998) 109–122. [45] Y.P. Chin, G. Aiken, E. O'Loughlin, Molecular weight, polydispersity and spectroscopic properties of aquatic humic substances, Environ. Sci. Technol. 28 (1994) 1853–1858. [46] H.-H. Lee, Y.-H. Weng, K.C. Li, Electro-ultrafiltration study on Aldrich humic substances with different molecular weights, Sep. Pur. Technol. 63 (2008) 23–29. [47] A. Braghetta, F.A. DiGiano, W.P. Ball, Nanofiltration of natural organic matter: pH and ionic strength effects, J. Environ. Eng. 123 (1997) 628–641