Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Immobilization-Stabilization of β-Glucosidase for Implementation of Intensified Hydrolysis of Cellobiose in Continuous Flow Reactors

dc.contributor.authorAlvarez-Gonzalez, Celia
dc.contributor.authorSantos Mazorra, Victoria Eugenia
dc.contributor.authorLadero Galán, Miguel
dc.contributor.authorBolívar Bolívar, Juan Manuel
dc.date.accessioned2023-06-22T11:21:15Z
dc.date.available2023-06-22T11:21:15Z
dc.date.issued2022
dc.description.abstractCellulose saccharification to glucose is an operation of paramount importance in the bioenergy sector and the chemical and food industries, while glucose is a critical platform chemical in the integrated biorefinery. Among the cellulose degrading enzymes, β-glucosidases are responsible for cellobiose hydrolysis, the final step in cellulose saccharification, which is usually the critical bottleneck for the whole cellulose saccharification process. The design of very active and stable β-glucosidase-based biocatalysts is a key strategy to implement an efficient saccharification process. Enzyme immobilization and reaction engineering are two fundamental tools for its understanding and implementation. Here, we have designed an immobilized-stabilized solid-supported β-glucosidase based on the glyoxyl immobilization chemistry applied in porous solid particles. The biocatalyst was stable at operational temperature and highly active, which allowed us to implement 25 °C as working temperature with a catalyst productivity of 109 mmol/min/gsupport. Cellobiose degradation was implemented in discontinuous stirred tank reactors, following which a simplified kinetic model was applied to assess the process limitations due to substrate and product inhibition. Finally, the reactive process was driven in a continuous flow fixed-bed reactor, achieving reaction intensification under mild operation conditions, reaching full cellobiose conversion of 34 g/L in a reaction time span of 20 min.
dc.description.departmentDepto. de Ingeniería Química y de Materiales
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMINECO
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/78447
dc.identifier.doi10.3390/catal12010080
dc.identifier.issn2073-4344
dc.identifier.officialurlhttps://doi.org/10.3390/catal12010080
dc.identifier.urihttps://hdl.handle.net/20.500.14352/72343
dc.journal.titleCatalysts
dc.language.isoeng
dc.publisherMDPI
dc.relation.projectID(2018-T1/BIO-10200)
dc.relation.projectIDCTQ2017-84963-C2-1-R and PCI2018-093114
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu66.0
dc.subject.keywordcellulose hydrolysis
dc.subject.keywordβ-glucosidase immobilization
dc.subject.keywordenzyme immobilization
dc.subject.keywordkinetic modelling
dc.subject.keywordreactor engineering
dc.subject.keywordflow biocatalysis
dc.subject.ucmIngeniería química
dc.subject.unesco3303 Ingeniería y Tecnología Químicas
dc.titleImmobilization-Stabilization of β-Glucosidase for Implementation of Intensified Hydrolysis of Cellobiose in Continuous Flow Reactors
dc.typejournal article
dc.volume.number12
dspace.entity.typePublication
relation.isAuthorOfPublicationab3f82fd-3def-4205-b655-af1a0ff82855
relation.isAuthorOfPublication24473ce5-8582-4e7e-b28a-cd5f91d1aeab
relation.isAuthorOfPublicationdd41e7a5-3013-4b28-8263-915921ecf30a
relation.isAuthorOfPublication.latestForDiscoveryab3f82fd-3def-4205-b655-af1a0ff82855

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
catalysts-12-00080-v2.pdf
Size:
2.28 MB
Format:
Adobe Portable Document Format

Collections