Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Algunos tópicos sobre soluciones de viscosidad en ecuaciones de Hamilton-Jacobi

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2002

Defense date

1996

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Universidad Complutense de Madrid, Servicio de Publicaciones
Citations
Google Scholar

Citation

Abstract

En este trabajo se presentan algunas propiedades intrínsecas de las soluciones de ecuaciones de la forma ut-h(x,u, u) = 0 en el marco de las soluciones de viscosidad eventualmente discontinuas. Comenzamos presentando algunos modelos que aparecen en las aplicaciones gobernados por ecuaciones de la forma anterior (óptica geométrica, frente de propagación de una llama, problemas de control optimo determinista,...). La memoria, esencialmente, esta estructurada en tres partes: propiedades intrínsecas. El uso de las soluciones de similaridad, la formula de representación de lax-oleinik, argumentos de convexidad y el teorema de verificación nos permiten obtener propiedades interesantes como la clase de datos iniciales admisibles para el problema de cauchy, la descripción del dato inicial, el horizonte maximal hasta donde están definidas las soluciones, el comportamiento asintótico espacial,... También presentamos resultados de unicidad y regularidad en los cuales van a jugar un papel fundamental la propiedad del cono de dependencia y las estimaciones del gradiente. Otra aportación interesante es el concepto de d+ solución con el cual damos sentido a como, mediante su envuelta semicontinua superior, una función discontinua puede ser la única solución de la ecuación. Propiedad de extinción en tiempo finito. Hacemos un estudio de la ecuación anterior cuando el hamiltoniano h(x,r,p) = h(p) - (r), siendo una función localmente lipschitziana. Bajo la hipótesis de absorción fuerte obtenemos propiedades sobre la función primer instante de extinción, entre las que destacamos: existencia, regularidad, tasa de extinción y comportamiento asintótico. Finalmente, se hace un exhaustivo estudio del comportamiento asintótico temporal de las soluciones

Research Projects

Organizational Units

Journal Issue

Description

Tesis de la Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, Departamento de Matemática Aplicada, leída el 08-07-1996

Keywords

Collections