Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Electron dynamics in AC-driven quantum dots

dc.book.titleAnderson localization and its ramifications: Disorder, phase coherence and electron correlations
dc.contributor.authorCreffield, Charles
dc.contributor.authorPlatero, G.
dc.date.accessioned2023-06-20T21:12:08Z
dc.date.available2023-06-20T21:12:08Z
dc.date.issued2003
dc.descriptionISSN: 0075-8450 International WE Heraeus Seminar on Localization, Quantum Coherence and Interactions (283rd. 2002. Hamburg, Germany). This work was supported by the Spanish DGES grant MAT2002-02465, by the European Union TMR contract FMRX-CT98-0180 and by the European Community’s Human Potential Programme under contract HPRN-CT-2000-00144, Nanoscale Dynamics.
dc.description.abstractA quantum dot (QD) is a structure in which electrons can be confined to small length scales, comparable to their Fermi wavelength. A set of electrons held in such a structure is conceptually similar to a set of atomic electrons bound to a nucleus, and for this reason quantum dots are sometimes termed “artificial atoms” [1]. Unlike real atoms, the physical properties of quantum dots can be easily varied, which gives theorists and experimentalists the opportunity to study novel quantum effects in a well-controlled system.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGES
dc.description.sponsorshipEuropean Union TMR
dc.description.sponsorshipEuropean Community’s Human Potential Programme
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/33681
dc.identifier.doi10.1007/978-3-540-45202-7_12
dc.identifier.isbn3-540-40785-5
dc.identifier.issn0075-8450
dc.identifier.officialurlhttp://dx.doi.org/10.1007/978-3-540-45202-7_12
dc.identifier.relatedurlhttp://link.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/60954
dc.issue.number630
dc.language.isoeng
dc.page.final173
dc.page.initial157
dc.page.total19
dc.publisherSpringer-Verlag Berlin
dc.relation.ispartofseriesLecture notes in physics
dc.relation.projectIDMAT2002-02465
dc.relation.projectIDFMRX-CT98-0180
dc.relation.projectIDHPRN-CT-2000- 00144
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordInteracting electrons
dc.subject.keywordCoherent destruction
dc.subject.keywordPersistent current
dc.subject.keywordArtificial atoms
dc.subject.keywordRadiation
dc.subject.keywordMolecule
dc.subject.keywordState
dc.subject.keywordField
dc.subject.keywordSpin
dc.subject.ucmFísica de materiales
dc.subject.ucmFísica del estado sólido
dc.subject.unesco2211 Física del Estado Sólido
dc.titleElectron dynamics in AC-driven quantum dots
dc.typebook part
dcterms.references1. C.E. Creffield and G. Platero, Phys. Rev. B 65, 113304 (2002). 2. M. Grifoni and P. Hänggi, Phys. Rep. 304, 229 (1998). 3. C.E. Creffield and G. Platero, Phys. Rev. B 66, 2353XX (2002). 4. M.A. Kastner, Phys. Today 46, 24 (1993); R.C. Ashoori, Nature (London) 379, 413 (1996). 5. R.H. Blick, D. Pfannkuche, R.J. Haug, K. von Klitzing and K. Eberl, Phys. Rev. Lett. 80, 4032 (1998). 6. T.H. Oosterkamp, T. Fujisawa, W.G. van der Wiel, K. Ishibashi, R.V. Hijman, S. Tarucha and L.P. Kouwenhoven, Nature (London) 395, 873 (1998). 7. P.W. Anderson, Phys. Rev. 109, 1492 (1958). 8. F. Grossmann, T. Dittrich, P. Jung and P. Hänggi, Phys. Rev. Lett. 67, 516 (1991). 9. J.H. Shirley, Phys. Rev. 138, B979 (1965). 10. M. Holthaus, Z. Phys. B 89, 251 (1992). 11. F. Grossmann and P. Hänggi, Europhys. Lett. 18, 571 (1992). 12. K. Jauregui, W. Häusler and B. Kramer, Erophys. Lett. 24, 581 (1993). 13. B.E. Cole, J.B. Williams, B.T. King, M.S. Sherwin and C.R. Stanley, Nature (London) 410, 60 (2001); D. Vion, A. Aasime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve and M.H. Devoret, Science 296, 886 (2002). 14. P.I. Tamborenea and H. Metiu, Phys. Rev. Lett. 83, 3912 (1999). 15. C.H. Bennett and D.P. DiVincenzo, Nature (London) 404, 247 (2000). 16. J.H. Jefferson and W. Häusler, Phys. Rev. B 54, 4936 (1996). 17. J. von Neumann and E.P. Wigner, Phys. Z 30, 467 (1929). 18. H. Sambe, Phys. Rev. A 7, 2203 (1973). 19. T. Fujisawa, D.G. Austing, Y. Tokura, Y. Hirayama and S. Tarucha, Phys. Rev. Lett. 88, 236802 (2002). 20. P. Zhang and X.-G. Zhao, Phys. Lett. A 271, 419 (2000). 21. E.P. Wigner, Phys. Rev. 46, 1002 (1934). 22. B. Tanatar and D.M. Ceperley, Phys. Rev. B 39, 5005 (1989). 23. S. Akbar and I.-H. Lee, Phys. Rev. B 63, 165301 (2001). 24. P.A. Schulz, P.H. Rivera, and N. Studart, Phys. Rev. B 66, 195310 (2002). 25. C.E. Creffield, W. Häusler, J.H. Jefferson and S. Sarkar, Phys. Rev. B 59, 10719 (1999). 26. C.E. Creffield, J.H. Jefferson, S. Sarkar and D.L.J. Tipton, Phys. Rev. B 62, 7249 (2000). 27. W. Häusler, Physica B 222, 43 (1996). 28. M. Koskinen, M. Manninen, B. Mottelson and S.M. Reimann, Phys. Rev. B 63, 205323 (2001). 29. D.G. Austing, T. Honda and S. Tarucha, Semicond. Sci. Technol. 12, 631 (1997). 30. J.T. Stockburger, Phys. Rev. E 59, R4709 (1999). 31. C.A. Stafford and S. Das Sarma, Phys. Rev. Lett. 72, 3590 (1994); R. Kotlyar and S. Das Sarma, Phys. Rev. B 55, R10205, (1997).
dspace.entity.typePublication
relation.isAuthorOfPublication3b58cb19-3165-4b80-a65d-1e03b90ebf64
relation.isAuthorOfPublication.latestForDiscovery3b58cb19-3165-4b80-a65d-1e03b90ebf64

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Creffield C 25 PREPRINT.pdf
Size:
726.47 KB
Format:
Adobe Portable Document Format