Advanced AI-Driven Thermographic Analysis for Diagnosing Diabetic Peripheral Neuropathy and Peripheral Arterial Disease

dc.contributor.authorSiré Langa, Albert
dc.contributor.authorLázaro Martínez, José Luis
dc.contributor.authorTardaguila García, Aroa
dc.contributor.authorSanz Corbalán, Irene
dc.contributor.authorGrau Carrión, Sergi
dc.contributor.authorUribe Elorrieta, Ibon
dc.contributor.authorJaimejuan Comes, Arià
dc.contributor.authorReig Bolaño, Ramon
dc.date.accessioned2025-10-08T17:58:23Z
dc.date.available2025-10-08T17:58:23Z
dc.date.issued2025-05-23
dc.description.abstractThis study explores the integration of advanced artificial intelligence (AI) techniques with infrared thermography for diagnosing diabetic peripheral neuropathy (DPN) and peripheral arterial disease (PAD). Diabetes-related foot complications, including DPN and PAD, are leading causes of morbidity and disability worldwide. Traditional diagnostic methods, such as the monofilament test for DPN and ankle–brachial pressure index for PAD, have limitations in sensitivity, highlighting the need for improved solutions. Thermographic imaging, a non-invasive, cost-effective, and reliable tool, captures temperature distributions of the patient plantar surface, enabling the detection of physiological changes linked to these conditions. This study collected thermographic data from diabetic patients and employed convolutional neural networks (CNNs) and vision transformers (ViTs) to classify individuals as healthy or affected by DPN or PAD (not healthy). These neural networks demonstrated superior diagnostic performance, compared to traditional methods (an accuracy of 95.00%, a sensitivity of 100.00%, and a specificity of 90% in the case of the ResNet-50 network). The results underscored the potential of combining thermography with AI to provide scalable, accurate, and patient-friendly diagnostics for diabetic foot care. Future work should focus on expanding datasets and integrating explainability techniques to enhance clinical trust and adoption.
dc.description.departmentDepto. de Enfermería
dc.description.facultyFac. de Enfermería, Fisioterapia y Podología
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationSiré Langa, A.; Lázaro-Martínez, J.L.; Tardáguila-García, A.; Sanz-Corbalán, I.; Grau-Carrión, S.; Uribe-Elorrieta, I.; Jaimejuan-Comes, A.; Reig-Bolaño, R. Advanced AI-Driven Thermographic Analysis for Diagnosing Diabetic Peripheral Neuropathy and Peripheral Arterial Disease. Appl. Sci. 2025, 15, 5886. https://doi.org/10.3390/app15115886
dc.identifier.doi10.3390/app15115886
dc.identifier.issn2076-3417
dc.identifier.officialurlhttps://doi.org/10.3390/app15115886
dc.identifier.relatedurlhttps://www.mdpi.com/2076-3417/15/11/5886
dc.identifier.urihttps://hdl.handle.net/20.500.14352/124685
dc.issue.number11
dc.journal.titleApplied Sciences (Switzerland)
dc.language.isoeng
dc.page.final13
dc.page.initial1
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu616.718.7/.9
dc.subject.keywordartificial intelligence
dc.subject.keywordvisual transformers
dc.subject.keywordCNN
dc.subject.keyworddiabetic foot
dc.subject.keyworddiabetic peripheral neuropathy
dc.subject.keywordperipheral arterial disease
dc.subject.keywordthermography
dc.subject.ucmPodología
dc.subject.unesco3299 Otras Especialidades Médicas
dc.titleAdvanced AI-Driven Thermographic Analysis for Diagnosing Diabetic Peripheral Neuropathy and Peripheral Arterial Disease
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number15
dspace.entity.typePublication
relation.isAuthorOfPublication38430380-ceed-4c8f-a40e-39bef50a5c51
relation.isAuthorOfPublication61d4fe0a-d8de-4690-8e48-3f49dd22293e
relation.isAuthorOfPublicationf32709ad-ba75-4d3a-b7f8-53e02af17131
relation.isAuthorOfPublication.latestForDiscovery38430380-ceed-4c8f-a40e-39bef50a5c51

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Advanced_AI_Driven.pdf
Size:
2.09 MB
Format:
Adobe Portable Document Format

Collections