Bounded linear non-absolutely summing operators
dc.contributor.author | Puglisi, D. | |
dc.contributor.author | Seoane-Sepúlveda, Juan B. | |
dc.date.accessioned | 2023-06-20T10:33:07Z | |
dc.date.available | 2023-06-20T10:33:07Z | |
dc.date.issued | 2008 | |
dc.description.abstract | We show that, in certain situations, we have lineability in the set of bounded linear and non-absolutely summing operators. Examples on lineability of the set Pi(p)(E, F) \ I-p(E, F) are also presented and some open questions are proposed. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/20041 | |
dc.identifier.doi | 10.1016/j.jmaa.2007.05.029 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S0022247X0700710X | |
dc.identifier.relatedurl | http://www.sciencedirect.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50460 | |
dc.issue.number | 1 | |
dc.journal.title | Journal of Mathematical Analysis and Applications | |
dc.language.iso | eng | |
dc.page.final | 298 | |
dc.page.initial | 292 | |
dc.publisher | Elsevier | |
dc.relation.projectID | MTM 2006-03531. | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.98 | |
dc.subject.keyword | p-Summing operators | |
dc.subject.keyword | p-Integral operators | |
dc.subject.keyword | Lineability | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | Bounded linear non-absolutely summing operators | |
dc.type | journal article | |
dc.volume.number | 338 | |
dcterms.references | R.M. Aron, V.I. Gurariy, J.B. Seoane-Sepúlveda, Lineability and spaceability of sets of functions on R, Proc. Amer. Math. Soc. 133 (2005)795–803. A. Dvoretzky, Some results on convex bodies and Banach spaces, in: Proc. Internat. Sympos. Linear Spaces,Jerusalem, 1960, Jerusalem Academic Press, 1960, pp.123–160. W.J. Davis, W.B. Johnson, Compact, non-nuclear operators,Studia Math. 51 (1974) 81–85. J. Diestel, H. Jarchow, A. Tonge, Absolutely Summing Operators, Cambridge University Press, 1995. P. Enflo, V.I. Gurariy, On lineability and spaceability of sets in function spaces, preprint. T. Figiel, W.B. Johnson, The approximation property does not imply the bounded approximation property, Proc. Amer.Math. Soc. 41 (1973)197–200. A. Grothendieck, Produits tensoriels topologiques et espaces nucléaries, Mem. Amer. Math. Soc. 16 (1955). R.C. James, Superreflexive spaces, Canad. J. Math. 24 (1972) 896–904. F.J. García-Pacheco, N. Palmberg, J.B. Seoane-Sepúlveda,Lineability and algebrability of pathological phenomena in analysis, J. Math. Anal.Appl. 326 (2007) 929–939. R. Ryan, Introduction to Tensor Products of Banach Spaces,Springer Monogr. Math., Springer-Verlag London,Ltd., C.P. Stegall, J.R. Retherford, Fully nuclear and completely nuclear operators with applications to L1- and L∞-spaces,Trans. Amer. Math.Soc. 163 (1972) 457–492. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1