Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Bounded linear non-absolutely summing operators

dc.contributor.authorPuglisi, D.
dc.contributor.authorSeoane-Sepúlveda, Juan B.
dc.date.accessioned2023-06-20T10:33:07Z
dc.date.available2023-06-20T10:33:07Z
dc.date.issued2008
dc.description.abstractWe show that, in certain situations, we have lineability in the set of bounded linear and non-absolutely summing operators. Examples on lineability of the set Pi(p)(E, F) \ I-p(E, F) are also presented and some open questions are proposed.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20041
dc.identifier.doi10.1016/j.jmaa.2007.05.029
dc.identifier.issn0022-247X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0022247X0700710X
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50460
dc.issue.number1
dc.journal.titleJournal of Mathematical Analysis and Applications
dc.language.isoeng
dc.page.final298
dc.page.initial292
dc.publisherElsevier
dc.relation.projectIDMTM 2006-03531.
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordp-Summing operators
dc.subject.keywordp-Integral operators
dc.subject.keywordLineability
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleBounded linear non-absolutely summing operators
dc.typejournal article
dc.volume.number338
dcterms.referencesR.M. Aron, V.I. Gurariy, J.B. Seoane-Sepúlveda, Lineability and spaceability of sets of functions on R, Proc. Amer. Math. Soc. 133 (2005)795–803. A. Dvoretzky, Some results on convex bodies and Banach spaces, in: Proc. Internat. Sympos. Linear Spaces,Jerusalem, 1960, Jerusalem Academic Press, 1960, pp.123–160. W.J. Davis, W.B. Johnson, Compact, non-nuclear operators,Studia Math. 51 (1974) 81–85. J. Diestel, H. Jarchow, A. Tonge, Absolutely Summing Operators, Cambridge University Press, 1995. P. Enflo, V.I. Gurariy, On lineability and spaceability of sets in function spaces, preprint. T. Figiel, W.B. Johnson, The approximation property does not imply the bounded approximation property, Proc. Amer.Math. Soc. 41 (1973)197–200. A. Grothendieck, Produits tensoriels topologiques et espaces nucléaries, Mem. Amer. Math. Soc. 16 (1955). R.C. James, Superreflexive spaces, Canad. J. Math. 24 (1972) 896–904. F.J. García-Pacheco, N. Palmberg, J.B. Seoane-Sepúlveda,Lineability and algebrability of pathological phenomena in analysis, J. Math. Anal.Appl. 326 (2007) 929–939. R. Ryan, Introduction to Tensor Products of Banach Spaces,Springer Monogr. Math., Springer-Verlag London,Ltd., C.P. Stegall, J.R. Retherford, Fully nuclear and completely nuclear operators with applications to L1- and L∞-spaces,Trans. Amer. Math.Soc. 163 (1972) 457–492.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Seoane33.pdf
Size:
152.71 KB
Format:
Adobe Portable Document Format

Collections