Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Fixed point index and decompositions of isolated invariant compacta.

dc.contributor.authorRomero Ruiz del Portal, Francisco
dc.date.accessioned2023-06-20T10:35:41Z
dc.date.available2023-06-20T10:35:41Z
dc.date.issued2004
dc.description.abstractThe author proves that if f is an orientation reversing homeomorphism of the plane and p is an isolated and stable fixed point of f then the fixed point index of f at p is equal to 1 . In the orientation preserving case this result was obtained by E. N. Dancer and R. Ortega [J. Dynam. Differential Equations 6 (1994), no. 4, 631–637. The proof is based on the prime ends compactifications method and a fixed point result by K. M. Kuperberg [Proc. Amer. Math. Soc. 112 (1991), no. 1, 223–229.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMCyT,
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21777
dc.identifier.doi10.1016/j.topol.2003.12.013
dc.identifier.issn0166-8641
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0166864103003808
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50700
dc.issue.number1-3
dc.journal.titleTopology and its Applications
dc.language.isoeng
dc.page.final223
dc.page.initial207
dc.publisherElsevier Science
dc.relation.projectIDBMF2000-0804-C03-01
dc.rights.accessRightsrestricted access
dc.subject.cdu515.1
dc.subject.keywordFixed point index
dc.subject.keywordConley index
dc.subject.keywordFiltration pairs.
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleFixed point index and decompositions of isolated invariant compacta.
dc.typejournal article
dc.volume.number141
dcterms.referencesK. Borsuk, Theory of Shape, in: Monografie Mat., vol. 59,PWN, Warsaw, 1975. K. Borsuk, Theory of Retracts, in: Monografie Mat., vol.44, PWN, Warsaw, 1967. R.F. Brown, The Lefschetz Fixed Point Theorem, Scott Foreman, Glenview, IL, 1971. P. Le Calvez, J.C. Yoccoz, Un théoréme d’indice pour les homéomorphismes du plan au voisinage d’un point fixe, Ann. of Math. 146 (1997) 241–293. C.O. Christenson, W.L. Voxman, Aspects of Topology, BCS Associates, Moscow, ID, 1998. A. Dold, Fixed point index and fixed point theorem for Euclidean neighborhood retracts, Topology 4 (1965)1–8. J. Franks, The Conley index and non-existence of minimal homeomorphisms, Illinois J. Math. 43 (3) (1999)457–464. J. Franks, D. Richeson, Shift equivalence and the Conley index, Trans. Amer. Math. Soc. 352 (7) (2000)3305–3322. M. Gidea, Leray functor and orbital Conley index for non-invariant sets, Discrete Continuous Dynamical Systems 5 (1999) 617–630. M. Gidea, The Conley index and countable decompositions of invariant sets, in: Conley Index Theory, in:Banach Center Publ., vol. 47, Polish Academy of Sciences, Warsaw, 1999, pp. 91–108. B. Kerékjártó, Voresungen über Topologie (I), Springer,Berlin, 1923. M. Mrozek, Index pairs and the fixed point index for semidynamical systems with discrete time, Fund.Math. 133 (1989). M. Mrozek, Leray functor and cohomological Conley index for discrete dynamical systems, Trans. Amer.Math. Soc. 318 (1990) 149–178. M. Mrozek, Shape index and other indices of Conley type for local maps on locally compact Hausdorff spaces, Fund. Math. 145 (1994). M. Mrozek, K.P. Rybakowski, A cohomological Conley index for maps on metrics spaces, J. Differential Equations 90 (1991) 143–171. R.D. Nussbaum, The fixed point index and some applications, in: Séminaire de Mathématiques Supérieures,Les Presses de L’Université de Montréal, 1985. J.W. Robbin, D. Salamon, Dynamical systems, shape theory and the Conley index, Ergodic Theory Dynamical Systems 8 (1988) 375–393. F.R. Ruiz del Portal, J.M. Salazar, Fixed point index of iterations of local homeomorphisms of the plane:A Conley-index approach, Topology 41 (2002) 1199–1212. F.R. Ruiz del Portal, J.M. Salazar, Shape index in metric spaces, Fund. Math. 176 (2003) 47–62. F.R. Ruiz del Portal, J.M. Salazar, A stable/unstable manifold theorem for local homeomorphisms of the plane,Ergodic Theory and Dynamical Systems, submitted for publication. A. Szymczak, The Conley index for discrete semidynamical systems, Topology Appl. 66 (3) (1995) 215–240. A. Szymczak, The Conley index for decompositions of isolated invariant sets, Fund. Math. 133 (1995) 71–90. A. Szymczak, The Conley index and symbolic dynamics,Topology 35 (1996) 287–299. P. Zgliczynski, Fixed point index for iterations,topological horseshoe and chaos, Topological Methods Nonlinear Anal. 8 (1996) 169–177.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RomeroRuiz19.pdf
Size:
371.58 KB
Format:
Adobe Portable Document Format

Collections