Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A new approach to polarization modeling using Markov chains

dc.conference.date11-15 Julio 2022
dc.conference.placeMilán, Italia
dc.conference.titleInternational Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems
dc.contributor.authorGuevara Gil, Juan Antonio
dc.contributor.authorGómez González, Daniel
dc.contributor.authorCastro Cantalejo, Javier
dc.contributor.authorGutiérrez García-Pardo, Inmaculada
dc.contributor.authorRobles Morales, José Manuel
dc.contributor.editorCiucci, Davide
dc.contributor.editorCouso, Inés
dc.contributor.editorMedina, Jesús
dc.contributor.editorŚlęzak, Dominik
dc.contributor.editorPetturiti, Davide
dc.contributor.editorBouchon-Meunier, Bernadette
dc.contributor.editorYager, Ronald R.
dc.date.accessioned2024-05-24T15:04:28Z
dc.date.available2024-05-24T15:04:28Z
dc.date.issued2022
dc.descriptionCommunications in Computer and Information Science (CCIS, volume 1601)
dc.description.abstractAbstract: In this study, we approach the problem of polarization modeling with Markov Chains (PMMC). We propose a probabilistic model that provides an interesting approach to knowing what the probability for a specific attitudinal distribution is to get to an i.e. social, political, or affective Polarization. It also quantifies how many steps are needed to reach Polarization for that distribution. In this way, we can know how risky an attitudinal distribution is for reaching polarization in the near future. To do so, we establish some premises over which our model fits reality. Furthermore, we compare this probability with the polarization measure proposed by Esteban and Ray and the fuzzy polarization measure by Guevara et al. In this way, PMMC provides the opportunity to study in deep what is the performance of these polarization measures in specific conditions. We find that our model presents evidence that in fact, some distributions will presumably show higher risk than others even when the entire population holds the same attitude. In this sense, according to our model, we find that moderate/indecisive attitudes present a higher risk for polarization than extreme attitudes and should not be considered the same scenario despite the fact that the entire population maintains the same attitude.
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Asuntos Económicos y Transformación Digital (2020-2023), España
dc.description.sponsorshipMinisterio de Economía, Comercio y Empresa (2023-2024), España
dc.description.statuspub
dc.identifier.citationGuevara, J.A., Gómez, D., Castro, J., Gutiérrez, I., Robles, J.M. (2022). A New Approach to Polarization Modeling Using Markov Chains. In: Ciucci, D., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2022. Communications in Computer and Information Science, vol 1602. Springer, Cham. https://doi.org/10.1007/978-3-031-08974-9_12
dc.identifier.doi10.1007/978-3-031-08974-9_12
dc.identifier.essn1865-0929
dc.identifier.isbn978-3-031-08973-2
dc.identifier.isbn978-3-031-08974-9
dc.identifier.officialurlhttps://doi.org/10.1007/978-3-031-08974-9_12
dc.identifier.relatedurlhttps://link.springer.com/chapter/10.1007/978-3-031-08974-9_12
dc.identifier.urihttps://hdl.handle.net/20.500.14352/104417
dc.language.isoeng
dc.page.final162
dc.page.initial151
dc.relation.projectIDR&D&I
dc.relation.projectIDPGC2018-096509B-I00
dc.relation.projectIDPR108/20-28
dc.relation.projectIDPID2019-106254RB-100
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu519.217
dc.subject.cdu519.216
dc.subject.cdu316.653
dc.subject.keywordPolarization
dc.subject.keywordMarkov Chains
dc.subject.keywordFuzzy measures
dc.subject.ucmProcesos estocásticos
dc.subject.ucmProbabilidades (Estadística)
dc.subject.ucmOpinión pública (Ciencias de la Información)
dc.subject.unesco1208.06 Procesos de Markov
dc.subject.unesco1209.07 Teoría de la Distribución y Probabilidad
dc.subject.unesco1208.08 Procesos Estocásticos
dc.subject.unesco5910 Opinión Pública
dc.titleA new approach to polarization modeling using Markov chains
dc.typeconference paper
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublication4dcf8c54-8545-4232-8acf-c163330fd0fe
relation.isAuthorOfPublicatione556dae6-6552-4157-b98a-904f3f7c9101
relation.isAuthorOfPublication2f4cd183-2dd2-4b4e-8561-9086ff5c0b90
relation.isAuthorOfPublicatione2662924-fa9e-477e-9261-d6fbd339d717
relation.isAuthorOfPublication.latestForDiscovery4dcf8c54-8545-4232-8acf-c163330fd0fe

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
978-3-031-08974-9-extraccion.pdf
Size:
766.7 KB
Format:
Adobe Portable Document Format