A singular perturbation in a linear parabolic equation with terms concentrating on the boundary
dc.contributor.author | Rodríguez Bernal, Aníbal | |
dc.date.accessioned | 2023-06-20T00:22:27Z | |
dc.date.available | 2023-06-20T00:22:27Z | |
dc.date.issued | 2012-01 | |
dc.description.abstract | In this paper we consider linear parabolic problems when some reaction and potential terms are concentrated in a neighborhood of a portion I" of the boundary. This neighborhood shrinks to I" as a parameter epsilon goes to zero. Then we derive the limit equation which has some new terms on I". We also analyze the regularity and convergence of the solutions. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Grupo de Investigacion CADEDIF, Spain | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17659 | |
dc.identifier.doi | 10.1007/s13163-011-0064-9 | |
dc.identifier.issn | 1139-1138 | |
dc.identifier.officialurl | http://link.springer.com/content/pdf/10.1007%2Fs13163-011-0064-9 | |
dc.identifier.relatedurl | http://link.springer.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/42473 | |
dc.issue.number | 1 | |
dc.journal.title | Revista matemática complutense | |
dc.language.iso | eng | |
dc.page.final | 197 | |
dc.page.initial | 165 | |
dc.publisher | Springer | |
dc.relation.projectID | PHB2006-003PC | |
dc.relation.projectID | MTM2009-07540 | |
dc.relation.projectID | GR58/08 Grupo 920894 BSCH-UCM | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.986 | |
dc.subject.keyword | Singular perturbation | |
dc.subject.keyword | Concentrating potentials | |
dc.subject.keyword | Perturbation of analytic semigroups | |
dc.subject.keyword | Resolvent estimates | |
dc.subject.ucm | Funciones (Matemáticas) | |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
dc.title | A singular perturbation in a linear parabolic equation with terms concentrating on the boundary | |
dc.type | journal article | |
dc.volume.number | 25 | |
dcterms.references | Adams, R.: Sobolev Spaces. Academic Press, San Diego (1978) Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: Schmeisser/Triebel: Function Spaces, Differential Operators and Nonlinear Analysis. Teubner Texte zur Mathematik, vol. 133, pp. 9–126 (1993) Amann, H.: Linear and Quasilinear Parabolic Problems. Abstract Linear Theory. Birkäuser, Basel (1995) Arrieta, J.M., Cholewa, J.W., Dlotko, T., Rodríguez-Bernal, A.: Linear parabolic equations in locally uniform spaces. Math. Models Methods Appl. Sci. 14, 253–293 (2004) Arrieta, J.M., Jiménez-Casas, A., Rodríguez-Bernal, A.: Nonhomogeneous flux condition as limit of concentrated reactions. Rev. Mat. Iberoam. 24(1), 183–211 (2008) Henry, D.: Geometry Theory of Semilinear Parabolic Equations. Springer, Berlin (1981) Jiménez-Casas, A., Rodríguez-Bernal, A.: Asymptotic behaviour of a parabolic problem with terms concentrated in the boundary. Nonlinear Anal. 71, 2377–2383 (2009) Jiménez-Casas, A., Rodríguez-Bernal, A.: Singular limit for a nonlinear parabolic equation with terms concentrating on the boundary. Serie de Prepublicaciones del Dept. de Matemática Aplicada U. Complutense, MA-UCM 2010–15. J. Math. Anal. Appl. doi:10.1016/j.jmaa.2011.01.051 Kato, T.: Perturbation Theory for Linear Operators. Grundlehren der Mathematischen Wissenschaften, vol. 132. Springer, Berlin (1976) Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, Basel (1995) Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983) | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | fb7ac82c-5148-4dd1-b893-d8f8612a1b08 | |
relation.isAuthorOfPublication.latestForDiscovery | fb7ac82c-5148-4dd1-b893-d8f8612a1b08 |
Download
Original bundle
1 - 1 of 1