Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Construction of the maximal solution of Backus' problem in geodesy and geomagnetism

Loading...
Thumbnail Image

Full text at PDC

Publication date

2011

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer
Citations
Google Scholar

Citation

Abstract

The (simplified) Backus' Problem (BP) consists in finding a harmonic function u on the domain exterior to the three dimensional unit sphere S, such that u tends to zero at infinity and the norm of the gradient of u takes prescribed values g on S. Except for a change of sign, the solution is not unique in general. However, there is uniqueness of solutions in the class of functions with the additional property that the radial component of the gradient of u on S is nonpositive. This is the geodetically relevant case. If a solution u with this property exists, then u is the maximal solution of the problem (and -u the minimal one). In this paper we propose a method of successive approximations to get this particular solution of BP and prove the convergence for functions g close to a constant function.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections