Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Citizen science to assess light pollution with mobile phones

dc.contributor.authorMuñoz-Gil, Gorka
dc.contributor.authorDauphin, Alexandre
dc.contributor.authorBeduini, Federica A.
dc.contributor.authorSánchez De Miguel, Alejandro
dc.date.accessioned2023-06-22T12:50:54Z
dc.date.available2023-06-22T12:50:54Z
dc.date.issued2022-10-06
dc.description© 2022 by the authors. Funding: This work is part of the R&D project CEX2019-000910-S, funded by MCIN/AEI/10.13039/501100011033/, from Fundació Cellex, Fundació Mir-Puig, and from Generalitat de Catalunya through the CERCA program. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 847635 (UNA4CAREER). RALAN map project. This work was supported by the EMISSI@N project (NERC grant NE/P01156X/1). G.M-G. acknowledges support from the Austrian Science Fund (FWF) through SFB BeyondC F7102 and from Fundació LaCaixa. A.D. acknowledges NOQIA; Ministerio de Ciencia y Innovation Agencia Estatal de Investigaciones (PGC2018-097027-BI00/10.13039/501100011033, CEX2019-000910- /10.13039/501100011033, Plan National FIDEUA PID2019-106901GB-I00, FPI, QUANTERA MAQS PCI2019-111828-2, QUANTERA DYNAMITE PCI2022-132919, Proyectos de I+D+I “Retos Colaboración” QUSPIN RTC2019-007196-7); European Union NextGenerationEU (PRTR); Fundació Cellex; Fundació Mir-Puig; Generalitat de Catalunya (European Social Fund FEDER and CERCA program (AGAUR Grant No. 2017 SGR 134, QuantumCAT U16-011424, co-funded by ERDF Operational Program of Catalonia 2014-2020); Barcelona Supercomputing Center MareNostrum (FI-2022-1-0042); EU Horizon 2020 FET-OPEN OPTOlogic (Grant No 899794); National Science Centre, Poland (Symfonia Grant No. 2016/20/W/ST4/00314); European Union’s Horizon 2020 research and innovation programme under the Marie-Skłodowska-Curie grant agreement No 101029393 (STREDCH) and No 847648(“La Caixa” Junior Leaders fellowships ID100010434: LCF/BQ/PI19/11690013, LCF/BQ/PI20/11760031, LCF/BQ/PR20/11770012,LCF/BQ/PR21/11840013). A.D. further acknowledges the financial support from a fellowship granted by la Caixa Foundation (ID 100010434, fellowship code LCF/BQ/PR20/11770012). Project cofinanced by the Diputació de Barcelona through the BiblioLab program (21296). Acknowledgments: Thanks to the “Cities at Night” Program for the ISS images. The images from the ISS are courtesy of the Earth Science and Remote Sensing Unit, NASA Johnson Space Center. We acknowledge Scifabric for the design of the NightUp web application. Thanks to Lluís Torner and Silvia Carrasco for the institutional support and valuable discussions and advice. Thanks to David Paredes-Barato for his technical support and Lydia Sanmartí-Vila and Silvia Tognetti for participating in the data collection and engagement activities. We thank Castelldefels city council, that provided the streetlight database that allowed us to validate our data. Special thanks go to Alfonso López Borgoñoz, who helped us in different phases of the citizen science project. The Ramón Fernández Jurado library (especially Marta Granel), the Aula Senior project and the Col·legi Frangoal were crucial in helping us engaging with the people of Castelldefels. Last, but not least, all the anonymous citizens who contributed to NightUp deserve a special mention here because none of these results would have been possible without them.
dc.description.abstractThe analysis of the colour of artificial lights at night has an impact on diverse fields, but current data sources have either limited resolution or scarce availability of images for a specific region. In this work, we propose crowdsourced photos of streetlights as an alternative data source: for this, we designed NightUp Castelldefels, a pilot for a citizen science experiment aimed at collecting data about the colour of streetlights. In particular, we extract the colour from the collected images and compare it to an official database, showing that it is possible to classify streetlights according to their colour from photos taken by untrained citizens with their own smartphones. We also compare our findings to the results obtained from one of the current sources for this kind of study. The comparison highlights how the two approaches give complementary information about artificial lights at night in the area. This work opens a new avenue in the study of the colour of artificial lights at night with the possibility of accurate, massive and cheap data collection.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMCIN/AEI
dc.description.sponsorshipFoundation CELLEX
dc.description.sponsorshipFundacio Mir-Puig
dc.description.sponsorshipGeneralitat de Catalunya through the CERCA program
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipEuropean Commission Joint Research Centre
dc.description.sponsorshipUK Research & Innovation (UKRI)
dc.description.sponsorshipNatural Environment Research Council (NERC)
dc.description.sponsorshipAustrian Science Fund (FWF)
dc.description.sponsorshipMinisterio de Ciencia y Innovation. Agencia Estatal de Investigaciones
dc.description.sponsorshipBarcelona Supercomputing Center MareNostrum
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/77549
dc.identifier.doi10.3390/rs14194976
dc.identifier.issn2072-4292
dc.identifier.officialurlhttps://doi.org/10.3390/rs14194976
dc.identifier.relatedurlhttps://www.mdpi.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/73250
dc.issue.number19
dc.journal.titleRemote Sensing
dc.language.isoeng
dc.page.initial4976
dc.relation.projectIDMarie Sklodowska-Curie grant agreement No 847635 (UNA4CAREER)
dc.relation.projectIDNE/P01156X/1
dc.relation.projectIDSFB BeyondC F7102
dc.relation.projectIDPGC2018-097027-BI00/10.13039/501100011033
dc.relation.projectIDCEX2019-000910-S/10.13039/501100011033
dc.relation.projectIDPID2019-106901GB-I00
dc.relation.projectIDQUANTERA MAQS PCI2019-111828-2
dc.relation.projectIDQUANTERA DYNAMITE PCI2022-132919
dc.relation.projectIDQUSPIN RTC2019-007196-7
dc.relation.projectID2017 SGR 134
dc.relation.projectIDQuantumCAT U16-011424
dc.relation.projectIDFI-2022-1-0042
dc.relation.projectIDSymfonia Grant No. 2016/20/W/ST4/00314
dc.relation.projectID847648
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu52
dc.subject.keywordCitizen science
dc.subject.keywordLight pollution
dc.subject.keywordMultispectral properties of lighting
dc.subject.ucmAstrofísica
dc.subject.ucmAstronomía (Física)
dc.titleCitizen science to assess light pollution with mobile phones
dc.typejournal article
dc.volume.number14
dspace.entity.typePublication
relation.isAuthorOfPublication9938be75-8360-4566-8763-c7afe78f3614
relation.isAuthorOfPublication.latestForDiscovery9938be75-8360-4566-8763-c7afe78f3614

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
remotesensing-14-04976-v2.pdf
Size:
4.27 MB
Format:
Adobe Portable Document Format

Collections