Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Mesoscopic theory of granular fluids

dc.contributor.authorVan Noije, T. P. C.
dc.contributor.authorErnst, M. H.
dc.contributor.authorBrito, Ricardo
dc.contributor.authorGarcía Orza, José Antonio
dc.date.accessioned2023-06-20T18:45:11Z
dc.date.available2023-06-20T18:45:11Z
dc.date.issued1997-07-21
dc.description© 1997 The American Physical Society. The authors wish to thank H. J. Bussemaker, D. Frenkel, M. Hagen, and W. v. d. Water for helpful comments and discussions. T. v. N. acknowledges support of the foundation “Fundamenteel Onderzoek der Materie (FOM),” which is financially supported by the Dutch National Science Foundation (NWO). R. B. acknowledges support from DGICYT (Spain) No. PB94-0265.
dc.description.abstractUsing fluctuating hydrodynamics we describe the slow buildup of long range spatial correlations in a freely evolving fluid of inelastic hard spheres. In the incompressible limit, the behavior of spatial velocity correlations (including r^(-d) behavior) is governed by vorticity fluctuations only and agrees well with two-dimensional simulations up to 50 to 100 collisions per particle. The incompressibility assumption breaks down beyond a distance that diverges in the elastic limit.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipFundamenteel Onderzoek der Materie (FOM)
dc.description.sponsorshipDutch National Science Foundation (NWO)
dc.description.sponsorshipDGICYT (España)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21560
dc.identifier.doi10.1103/PhysRevLett.79.411
dc.identifier.issn0031-9007
dc.identifier.officialurlhttp://prl.aps.org/pdf/PRL/v79/i3/p411_1
dc.identifier.relatedurlhttp://prl.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58516
dc.issue.number3
dc.journal.titlePhysical Review Letters
dc.language.isoeng
dc.page.final414
dc.page.initial411
dc.publisherAmerican Physical Society
dc.relation.projectIDPB94-0265
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleMesoscopic theory of granular fluids
dc.typejournal article
dc.volume.number79
dcterms.references[1] H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Rev. Mod. Phys. 68, 1259 (1996). [2] I. Goldhirsch and G. Zanetti, Phys. Rev. Lett. 70, 1619 (1993); I. Goldhirsch, M-L. Tan, and G. Zanetti, J. Scient. Comp. 8, 1 (1993); N. Sela, I. Goldhirsch, and S. H. Noskowicz, Phys. Fluids 8, 2337 (1996). [3] S. McNamara, Phys. Fluids A 5, 3056 (1993); S. McNamara and W. R. Young, Phys. Rev. E 53, 5089 (1996). [4] P. Deltour and J.L. Barrat, J. Phys. I (France) 7, 137 (1997). [5] S. E. Esipov and T. Pöschel, J. Stat. Phys. 86, 1385 (1997). [6] J. J. Brey, F. Moreno, and J. W. Dufty, Phys. Rev. E 54, 445 (1996). [7] J. A. G. Orza, R. Brito, T. P. C. van Noije, and M. H. Ernst, Report No. cond-mat/9702029. [8] S. Chapman and T. G. Cowling,The Mathematical Theory of Non-uniform Gases (Cambridge University Press, Cambridge, 1970). [9] The same nonlinear analysis of [2] reveals that the length scale[xi] ~ l0 / √ϵ, associated with clustering, is the same as the correlation length j introduced above Eq (4). [10] J. S. Langer, in Solids Far from Equilibrium, edited by C. Godrèche (Cambridge University Press, Cambridge, 1992), p. 297. [11] L. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, New York, 1959), Chaps. 3 and 17. [12] G. Grinstein, D.-H. Lee, and S. Sachdev, Phys. Rev. Lett. 64, 1927 (1990); B. Schmittmann and R. K. P. Zia, Statistical Mechanics of Driven Diffusive Systems (Academic Press, New York, 1995). [13] R. Brito, J. A. G. Orza, T. P. C. van Noije, and M. H. Ernst (to be published).
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Brito23libre.pdf
Size:
200.49 KB
Format:
Adobe Portable Document Format

Collections