On universal hyperbolic orbifold structures in S3 with the Borromean rings as singularity

dc.contributor.authorHilden, Hugh Michael
dc.contributor.authorLozano Imízcoz, María Teresa
dc.contributor.authorMontesinos Amilibia, José María
dc.date.accessioned2023-06-20T03:33:17Z
dc.date.available2023-06-20T03:33:17Z
dc.date.issued2010
dc.description.abstractA link in S3 is called a universal link if every closed orientable 3-manifold is a branched cover of S3 over this link. It is well known that the Borromean rings and many other links are universal links. The question whether a link is universal can be naturally extended to orbifolds. An orbifold M is said to be universal if every closed orientable 3-manifold is the underlying space of an orbifold which is an orbifold covering of M. Let Bm,n,p denote the orbifold whose underlying space is S3, whose singular set is the Borromean rings B, and whose isotropy groups for the three components of B are cyclic groups of orders m, n and p. In an earlier paper of H. M. Hilden et al. [Invent. Math. 87 (1987), no. 3, 441–456;], it was shown that B4,4,4 is universal. In this paper, the authors generalize this result and prove that Bm,2p,2q is universal for every m≥3, p≥2, q≥2.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMTM
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21745
dc.identifier.issn0018-2079
dc.identifier.officialurlhttp://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.hmj/1291818850
dc.identifier.relatedurlhttp://www.math.sci.hiroshima-u.ac.jp/hmj/
dc.identifier.relatedurlhttp://0-projecteuclid.org.cisne.sim.ucm.es/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.hmj/1291818850
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43852
dc.issue.number3
dc.journal.titleHiroshima mathematical journal
dc.language.isoeng
dc.page.final370
dc.page.initial357
dc.publisherHiroshima University. Faculty of Science
dc.relation.projectID2007-67908-C02-01
dc.relation.projectID2006-00825
dc.rights.accessRightsrestricted access
dc.subject.cdu515.1
dc.subject.keywordOrbifold
dc.subject.keywordBorromean rings
dc.subject.keyworduniversal orbifold
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleOn universal hyperbolic orbifold structures in S3 with the Borromean rings as singularity
dc.typejournal article
dc.volume.number40
dcterms.referencesG. Brumfiel, H. M. Hilden, M. T. Lozano, J. M. Montesinos-Amilibia, E. Ramirez-Lozada, H. Short, D. Tejada, and M. Toro, Three manifolds as geometric branched covering of the three sphere. Bol. Soc. Mat. Mexicana (3), 14, 2008. H. M. Hilden, M. T. Lozano, J. M. Montesinos, and W. C. Whitten, On universal groups and three-manifolds. Invent. Math., 87(3):441–456, 1987. H. M. Hilden, M. T. Lozano, and J. M. Montesinos, The Whitehead link, the Borromean rings and the knot 946 are universal. Collect. Math., 34(l):19–28, 1983. H. M. Hilden, M. T. Lozano, and J. M. Montesinos-Amilibia, On the Borromean orbifolds: geometry and arithmetic. In Topology'90 (Columbus, OH, 1990), of Ohio State Univ. Math. Res. Inst. Publ., pages 133–167. De Gruyter, Berlin, 1992. H. M. Hilden, M. T. Lozano, and J. M. Montesinos-Amilibia, Universal 2-bridge knot and link orbifolds. J. Knot Theory Ramifications, 2(2):141–148, 1993. H. M. Hilden, Every closed orientable 3-manifold is a 3-fold branched covering space of S3. Bull. Amer. Math. Soc., 80:1243–1244, 1974. M. Kato, On uniformizations of orbifolds. In Homotopy theory and related topics (Kyoto, 1984), volume 9 of Adv. Stud. Pure Math., pages 149–172. North-Holland, Amsterdam, 1987. J. M. Montesinos, Sobre la conjetura de Poincaré y los recubridores ramificados sobre un nudo. Ph.D. Thesis, Universidad Complutense de Madrid 1971. J. M. Montesinos, A representation of closed orientable 3-manifolds as 3-fold branched coverings of S3. Bull. Amer. Math. Soc., 80:845–846, 1974.
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
hilden-lozano-montasinos.pdf
Size:
401.62 KB
Format:
Adobe Portable Document Format

Collections