Analytical results for cell constriction dominated by bending energy

dc.contributor.authorAlmendro Vedia, Víctor Galileo
dc.contributor.authorMonroy Muñoz, Francisco
dc.contributor.authorCao García, Francisco Javier
dc.date.accessioned2023-06-18T05:40:48Z
dc.date.available2023-06-18T05:40:48Z
dc.date.issued2015-01-28
dc.description©2015 American Physical Society. We gratefully acknowledge Elena Beltrán de Heredia Rodríguez for checking the results and the equations in the paper. This work was supported by Ministerio de Ciencia e Innovación (Spain) through Grants No. FIS2010-17440 (F.J.C.), No. FIS2012-35723 (F.M.), and No. CSD2007-0010 (F.M.) (the last one as part of the Consolider Ingenio en Nanociencia Molecular Grant); Ministerio de Economía y Competitividad (Spain) Grant No. FIS2009-14650-C02-01 (F.M); and Comunidad Autónoma de Madrid (Spain) Grant No. S2009MAT-1507 (F.M.).V.G.A.-V. acknowledges support from Ministerio de Educación Cultura y Deporte (Spain) through the Becas de Colaboración program.
dc.description.abstractAnalytical expressions are obtained for the main magnitudes of a symmetrically constricted vesicle. These equations provide an easy and compact way to predict minimal requirements for successful constriction and its main magnitudes. Thus, they can be useful for the design of synthetic divisomes and give good predictions for magnitudes including constriction energy, length of the constriction zone, volume and area of the vesicle, and the stability coefficient for symmetric constriction. The analytical expressions are derived combining a perturbative expansion in the Lagrangian for small deformations with a cosine ansatz in the constriction region. Already the simple fourth-order (or sixth-order) approximation provides a good approximation to the values of the main physical magnitudes during constriction, as we show through comparison with numerical results. Results are for vesicles with negligible effects from spontaneous curvature, surface tension, and pressure differences. This is the case when membrane components generating spontaneous curvature are scarce, membrane trafficking is present with low energetic cost, and the external medium is isotonic
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMinisterio de Ciencia e Innovación (Spain)
dc.description.sponsorshipMinisterio de Economía y Competitividad (Spain)
dc.description.sponsorshipMinisterio de Educacion Cultura y Deporte (Spain) through the Becas de Colaboracion program
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29495
dc.identifier.doi10.1103/PhysRevE.91.012713
dc.identifier.issn1539-3755
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevE.91.012713
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/23003
dc.issue.number1
dc.journal.titlePhysical review E
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDNOBIMAT-CM (S/2009MAT-1507)
dc.relation.projectIDFIS2010-17440
dc.relation.projectIDFIS2012-35723
dc.relation.projectIDCSD2007-0010
dc.relation.projectIDFIS2009-14650-C02-01
dc.rights.accessRightsopen access
dc.subject.cdu539.1
dc.subject.keywordShape transformations
dc.subject.keywordMembrane biogenesis
dc.subject.keywordEscherichia-coli
dc.subject.keywordCytokinesis
dc.subject.keywordCurvature
dc.subject.keywordVesicles
dc.subject.ucmFísica nuclear
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleAnalytical results for cell constriction dominated by bending energy
dc.typejournal article
dc.volume.number91
dcterms.references[1] T. D. Pollard and W. C. Earnshaw, Cell Biology, 2nd ed. (Saunders Elsevier, Philadelphia, 2008). [2] J. Errington, R. Daniel, and D. Scheffers, Cytokinesis in bacteria microbiol, Microbiol. Mol. Biol. Rev. 67, 52 (2003). [3] C. Field, R. Li, and K. Oegema, Cytokinesis in eukaryotes: A mechanistic comparison, Curr. Opin. Cell Biol. 11, 68 (1999). [4] T. D. Pollard, Mechanics of cytokinesis in eukaryotes, Curr. Opin. Cell Biol. 22, 50 (2010). [5] D. Boal, Mechanics of the Cell, 2nd ed. (Cambridge University Press, Cambridge, 2012). [6] R. A. Green, E. Paluch, and K. Oegema, Cytokinesis in animal cells, Annu. Rev. Cell Dev. Biol. 28, 29 (2012). [7] J. Sedzinski, M. Biro, A. Oswald, J.-Y. Tinevez, G. Salbreux, and E. Paluch, Polar actomyosin contractility destabilizes the position of the cytokinetic furrow, Nature (London) 476, 462 (2011). [8] T. D. Pollard and J.-Q.Wu, Understanding cytokinesis: Lessons from fission yeast, Nat. Rev. Mol. Cell Biol. 11, 149 (2010). [9] V. G. Almendro-Vedia, F. Monroy, and F. J. Cao, Mechanics of constriction during cell division: A variational approach, PLoS ONE 8, e69750 (2013). [10] G. Reshes, S. Vanounou, I. Fishov, and M. Feingold, Cell shape dynamics in escherichia coli, Biophys. J. 94, 251 (2008). [11] D. J. Morre, Membrane biogenesis, Annu. Rev. Plant Physiol. 26, 441 (1975). [12] A. Nohturfft and S. C. Zhang, Coordination of lipid metabolism in membrane biogenesis, Annu. Rev. Cell Dev. Biol. 25, 539 (2009). [13] R. Albertson, B. Riggs, and W. Sullivan, Membrane traffic: A driving force in cytokinesis, Trends Cell Biol. 15, 92 (2005). [14] E. Boucrot and T. Kirchhausen, Endosomal recycling controls plasma membrane area during mitosis, Proc. Natl. Acad. Sci. USA 104, 7939 (2007). [15] G.W. Niven, J. S. Morton, T. Fuks, and B. M. Mackey, Influence of environmental stress on distributions of times to first division in escherichia coli populations, as determined by digital-image analysis of individual cells, Appl. Environ. Microbiol. 74, 3757 (2008). [16] Z. Kutalik, M. Razaz, A. Elfwing, A. Ballagi, and J. Baranyi, Stochastic modelling of individual cell growth using flow chamber microscopy images, Int. J. Food Microbiol. 105, 177 (2005). [17] H.-J. Kim, H. J. Joo, Y. H. Kim, S. Ahn, J. Chang, K.-B. Hwang, D.-H. Lee, and K.-J. Lee, Systemic analysis of heat shock response induced by heat shock and a proteasome inhibitor MG132, PLoS ONE 6, e20252 (2011). [18] I.Hörger, F. Campelo, A. Hernández-Machado, and P. Tarazona, Constricting force of filamentary protein rings evaluated from experimental results, Phys. Rev. E 81, 031922 (2010). [19] U. Seifert, K. Berndl, and R. Lipowsky, Shape transformations of vesicles: Phase diagram for spontaneous-curvature and bilayer-coupling models, Phys. Rev. A 44, 1182 (1991). [20] F. Jülicher and R. Lipowsky, Shape transformations of vesicles with intramembrane domains, Phys. Rev. E 53, 2670 (1996). [21] M. Hu, J. J. Briguglio, and M. Deserno, Determining the gaussian curvature modulus of lipid membranes in simulations, Biophys. J. 102, 1403 (2012).
dspace.entity.typePublication
relation.isAuthorOfPublicationcac874a1-a328-4d98-a6a4-7a594f6573c7
relation.isAuthorOfPublicationbe319c4d-3f68-44c3-bbfc-a0bb85e27477
relation.isAuthorOfPublication48a00bc8-8d51-4040-b1c1-34507f6c489b
relation.isAuthorOfPublication.latestForDiscoverybe319c4d-3f68-44c3-bbfc-a0bb85e27477

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cao García, FJ LIBRE 01.pdf
Size:
701.17 KB
Format:
Adobe Portable Document Format

Collections