Nonsingular G_2 stiff fluid cosmologies
| dc.contributor.author | Fernández Jambrina, L. | |
| dc.contributor.author | González Romero, Luis Manuel | |
| dc.date.accessioned | 2023-06-20T10:59:00Z | |
| dc.date.available | 2023-06-20T10:59:00Z | |
| dc.date.issued | 2004-06 | |
| dc.description | ©2004 American Institute of Physics. The present work has been supported by Dirección General de Enseñanza Superior Project PB98-0772. The authors wish to thank F.J. Chinea, F. Navarro-Lérida, and M.J. Pareja for valuable discussions. | |
| dc.description.abstract | In this paper we analyze Abelian diagonal orthogonally transitive space–times with spacelike orbits for which the matter content is a stiff perfect fluid. The Einstein equations are cast in a suitable form for determining their geodesic completeness. A sufficient condition on the metric of these space–times is obtained, that is fairly easy to check and to implement in exact solutions. These results confirm that nonsingular space–times are abundant among stiff fluid cosmologies. | |
| dc.description.department | Depto. de Física Teórica | |
| dc.description.faculty | Fac. de Ciencias Físicas | |
| dc.description.refereed | TRUE | |
| dc.description.sponsorship | Dirección General de Enseñanza Superior | |
| dc.description.status | pub | |
| dc.eprint.id | https://eprints.ucm.es/id/eprint/33008 | |
| dc.identifier.doi | 10.1063/1.1705715 | |
| dc.identifier.issn | 0022-2488 | |
| dc.identifier.officialurl | http://dx.doi.org/10.1063/1.1705715 | |
| dc.identifier.relatedurl | http://scitation.aip.org | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/51552 | |
| dc.issue.number | 6 | |
| dc.journal.title | Journal of mathematical physics | |
| dc.language.iso | eng | |
| dc.page.final | 2123 | |
| dc.page.initial | 2113 | |
| dc.publisher | American Institute of Physics | |
| dc.relation.projectID | PB98-0772 | |
| dc.rights.accessRights | open access | |
| dc.subject.cdu | 51-73 | |
| dc.subject.keyword | Geodesic completeness | |
| dc.subject.keyword | Perfect fluids | |
| dc.subject.keyword | Singularity | |
| dc.subject.ucm | Física-Modelos matemáticos | |
| dc.subject.ucm | Física matemática | |
| dc.title | Nonsingular G_2 stiff fluid cosmologies | |
| dc.type | journal article | |
| dc.volume.number | 45 | |
| dcterms.references | 1. J. M. M. Senovilla, Phys. Rev. Lett. 64, 2219 (1990). 2. S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-time (Cambridge University Press, Cambridge, 1973). 3. J. Beem, P. Ehrlich, and K. Easley, Global Lorentzian Geometry (Dekker, New York, 1996). 4. F. J. Chinea, L. Ferna´ndez-Jambrina, and J. M. M. Senovilla, Phys. Rev. D 45, 481 (1992). 5. E. Ruiz and J. M. M. Senovilla, Phys. Rev. D 45, 1995 (1992). 6. J. M. M. Senovilla, Gen. Relativ. Gravit. 30, 701 (1998). 7. A. Romero and M. Sánchez, Geom. Dedic. 53, 103 (1994). 8. L. Fernández-Jambrina and L. M. González-Romero, Class. Quantum Grav. 16, 953 (1999). 9. L. Fernández-Jambrina, J. Math. Phys. 40, 4028 (1999). 10. L. Fernández-Jambrina and L. M. González-Romero, Phys. Rev. D 66, 024027 (2002). 11. J. M. M. Senovilla, Phys. Rev. Lett. 81, 5032 (1998). 12. F. J. Chinea and L. M. González-Romero, Class. Quantum Grav. 9, 1271 (1992). 13. D. Kramer, H. Stephani, M. MacCallum, and E. Herlt, Exact Solution’s of Einstein’s Field Equations (Cambridge University Press, Cambridge, MA, 1980). 14. J. Wainwright, W. C. W. Ince, and B. J. Marshman, Gen. Relativ. Gravit. 10, 259 (1979). 15. F. John, Partial Differential Equations, 4th ed. (Springer-Verlag, Berlin, 1982). | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 7b2418bd-138f-46a9-942a-85df3f006089 | |
| relation.isAuthorOfPublication.latestForDiscovery | 7b2418bd-138f-46a9-942a-85df3f006089 |
Download
Original bundle
1 - 1 of 1


