Nonsingular G_2 stiff fluid cosmologies

dc.contributor.authorFernández Jambrina, L.
dc.contributor.authorGonzález Romero, Luis Manuel
dc.date.accessioned2023-06-20T10:59:00Z
dc.date.available2023-06-20T10:59:00Z
dc.date.issued2004-06
dc.description©2004 American Institute of Physics. The present work has been supported by Dirección General de Enseñanza Superior Project PB98-0772. The authors wish to thank F.J. Chinea, F. Navarro-Lérida, and M.J. Pareja for valuable discussions.
dc.description.abstractIn this paper we analyze Abelian diagonal orthogonally transitive space–times with spacelike orbits for which the matter content is a stiff perfect fluid. The Einstein equations are cast in a suitable form for determining their geodesic completeness. A sufficient condition on the metric of these space–times is obtained, that is fairly easy to check and to implement in exact solutions. These results confirm that nonsingular space–times are abundant among stiff fluid cosmologies.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDirección General de Enseñanza Superior
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/33008
dc.identifier.doi10.1063/1.1705715
dc.identifier.issn0022-2488
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.1705715
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51552
dc.issue.number6
dc.journal.titleJournal of mathematical physics
dc.language.isoeng
dc.page.final2123
dc.page.initial2113
dc.publisherAmerican Institute of Physics
dc.relation.projectIDPB98-0772
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordGeodesic completeness
dc.subject.keywordPerfect fluids
dc.subject.keywordSingularity
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleNonsingular G_2 stiff fluid cosmologies
dc.typejournal article
dc.volume.number45
dcterms.references1. J. M. M. Senovilla, Phys. Rev. Lett. 64, 2219 (1990). 2. S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-time (Cambridge University Press, Cambridge, 1973). 3. J. Beem, P. Ehrlich, and K. Easley, Global Lorentzian Geometry (Dekker, New York, 1996). 4. F. J. Chinea, L. Ferna´ndez-Jambrina, and J. M. M. Senovilla, Phys. Rev. D 45, 481 (1992). 5. E. Ruiz and J. M. M. Senovilla, Phys. Rev. D 45, 1995 (1992). 6. J. M. M. Senovilla, Gen. Relativ. Gravit. 30, 701 (1998). 7. A. Romero and M. Sánchez, Geom. Dedic. 53, 103 (1994). 8. L. Fernández-Jambrina and L. M. González-Romero, Class. Quantum Grav. 16, 953 (1999). 9. L. Fernández-Jambrina, J. Math. Phys. 40, 4028 (1999). 10. L. Fernández-Jambrina and L. M. González-Romero, Phys. Rev. D 66, 024027 (2002). 11. J. M. M. Senovilla, Phys. Rev. Lett. 81, 5032 (1998). 12. F. J. Chinea and L. M. González-Romero, Class. Quantum Grav. 9, 1271 (1992). 13. D. Kramer, H. Stephani, M. MacCallum, and E. Herlt, Exact Solution’s of Einstein’s Field Equations (Cambridge University Press, Cambridge, MA, 1980). 14. J. Wainwright, W. C. W. Ince, and B. J. Marshman, Gen. Relativ. Gravit. 10, 259 (1979). 15. F. John, Partial Differential Equations, 4th ed. (Springer-Verlag, Berlin, 1982).
dspace.entity.typePublication
relation.isAuthorOfPublication7b2418bd-138f-46a9-942a-85df3f006089
relation.isAuthorOfPublication.latestForDiscovery7b2418bd-138f-46a9-942a-85df3f006089

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gonzalezromero06libre.pdf
Size:
424.6 KB
Format:
Adobe Portable Document Format

Collections