Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Robust multi-view approaches for retinal layer segmentation in glaucoma patients via transfer learning

dc.contributor.authorGende Lozano, Mateo
dc.contributor.authorMoura Ramos, José Joaquim De
dc.contributor.authorFernández Vigo, José Ignacio
dc.contributor.authorMartínez De La Casa Fernández-Borrella, José María
dc.contributor.authorGarcía Feijoo, Julián
dc.contributor.authorNovo Buján, Jorge
dc.contributor.authorOrtega Hortas, Marcos
dc.dateSubmitted Sep 12, 2022. Accepted for publication Feb 10, 2023. Published online (ahead of print): Mar 09, 2023
dc.date.accessioned2023-06-22T12:44:32Z
dc.date.available2023-06-22T12:44:32Z
dc.date.issued2023-03-09
dc.description.abstractBackground: Glaucoma is the leading global cause of irreversible blindness. Glaucoma patients experience a progressive deterioration of the retinal nervous tissues that begins with a loss of peripheral vision. An early diagnosis is essential in order to prevent blindness. Ophthalmologists measure the deterioration caused by this disease by assessing the retinal layers in different regions of the eye, using different optical coherence tomography (OCT) scanning patterns to extract images, generating different views from multiple parts of the retina. These images are used to measure the thickness of the retinal layers in different regions. Methods: We present two approaches for the multi-region segmentation of the retinal layers in OCT images of glaucoma patients. These approaches can extract the relevant anatomical structures for glaucoma assessment from three different OCT scan patterns: circumpapillary circle scans, macular cube scans and optic disc (OD) radial scans. By employing transfer learning to take advantage of the visual patterns present in a related domain, these approaches use state-of-the-art segmentation modules to achieve a robust, fully automatic segmentation of the retinal layers. The first approach exploits inter-view similarities by using a single module to segment all of the scan patterns, considering them as a single domain. The second approach uses view-specific modules for the segmentation of each scan pattern, automatically detecting the suitable module to analyse each image. Results: The proposed approaches produced satisfactory results with the first approach achieving a dice coefficient of 0.85±0.06 and the second one 0.87±0.08 for all segmented layers. The first approach produced the best results for the radial scans. Concurrently, the view-specific second approach achieved the best results for the better represented circle and cube scan patterns. Conclusions: To the extent of our knowledge, this is the first proposal in the literature for the multi-view segmentation of the retinal layers of glaucoma patients, demonstrating the applicability of machine learningbased systems for aiding in the diagnosis of this relevant pathology.en
dc.description.departmentUnidad Docente de Inmunología, Oftalmología y ORL
dc.description.facultyFac. de Óptica y Optometría
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipConsellería de Cultura, Educación, Formación Profesional e Universidades, Xunta de Galicia (España)
dc.description.sponsorshipCentro de Investigación de Galicia
dc.description.statusinpress
dc.eprint.idhttps://eprints.ucm.es/id/eprint/77161
dc.identifier.citationGende Lozano, M., Moura Ramos, J. J., Ferández Vigo, J. I. et al. «Robust Multi-View Approaches for Retinal Layer Segmentation in Glaucoma Patients via Transfer Learning». Quantitative Imaging in Medicine and Surgery, vol. 13, n.o 5, mayo de 2023, pp. 2846859-2842859. qims.amegroups.org, https://doi.org/10.21037/qims-22-959.
dc.identifier.doi10.21037/qims-22-959
dc.identifier.issn2223-4292
dc.identifier.officialurlhttps://dx.doi.org/10.21037/qims-22-959
dc.identifier.relatedurlhttps://qims.amegroups.com/article/view/111216/html
dc.identifier.urihttps://hdl.handle.net/20.500.14352/73120
dc.journal.titleQuantitative Imaging in Medicine and Surgery
dc.language.isoeng
dc.page.initial14 p.
dc.publisherAme Publishing Company
dc.relation.projectIDRTI2018-095894-B-I00
dc.relation.projectIDPID2019-108435RB-I00
dc.relation.projectIDTED2021-131201B-I00
dc.relation.projectIDPDC2022-133132-I00
dc.relation.projectIDED431C 2020/24
dc.relation.projectIDED481A 2021/161
dc.relation.projectIDED431G 2019/01
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.cdu617.7-007.681
dc.subject.cdu617.735-073.75
dc.subject.keywordComputer-aided diagnosis (CAD)
dc.subject.keywordOptical coherence tomography (OCT)
dc.subject.keywordGlaucoma
dc.subject.keywordDeep learning
dc.subject.keywordSegmentation
dc.subject.ucmOftalmología
dc.subject.ucmTécnicas de la imagen
dc.subject.unesco3201.09 Oftalmología
dc.titleRobust multi-view approaches for retinal layer segmentation in glaucoma patients via transfer learningen
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication273a99c3-2c9f-4dd0-8939-b7ff3593124c
relation.isAuthorOfPublication558b8023-6d72-4dff-9f99-2e60f6f31843
relation.isAuthorOfPublication.latestForDiscovery558b8023-6d72-4dff-9f99-2e60f6f31843

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
111216-PB1-8398-R1.pdf
Size:
1.86 MB
Format:
Adobe Portable Document Format

Collections