The Samuel realcompactification of a metric space

dc.contributor.authorGarrido Carballo, María Isabel
dc.contributor.authorMeroño Moreno, Ana Soledad
dc.date.accessioned2023-06-17T22:11:22Z
dc.date.available2023-06-17T22:11:22Z
dc.date.issued2017
dc.description.abstractIn this paper we introduce a realcompactification for any metric space (X, d), defined by means of the family of all its real-valued uniformly continuous functions. We call it the Samuel realcompactification, according to the well known Samuel compactification associated to the family of all the bounded real-valued uniformly continuous functions. Among many other things, we study the corresponding problem of the Samuel realcompactness for metric spaces. At this respect, we prove that a result of Katetov-Shirota type occurs in this context, where the completeness property is replaced by Bourbaki-completeness (a notion recently introduced by the authors) and the closed discrete subspaces are replaced by the uniformly discrete ones. More precisely, we see that a metric space (X, d) is Samuel realcompact iff it is Bourbaki-complete and every uniformly discrete subspace of X has non-measurable cardinal. As a consequence, we derive that a normed space is Samuel realcompact iff it has finite dimension. And this means in particular that realcompactness and Samuel realcompactness can be very far apart. The paper also contains results relating this realcompactification with the so-called Lipschitz realcompactification (also studied here), with the classical Hewitt-Nachbin realcompactification and with the completion of the initial metric space.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (España)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/45124
dc.identifier.citationGarrido, M. Isabel, y Ana S. Meroño. «The Samuel Realcompactification of a Metric Space». Journal of Mathematical Analysis and Applications, vol. 456, n.o 2, diciembre de 2017, pp. 1013-39. DOI.org (Crossref), https://doi.org/10.1016/j.jmaa.2017.07.033.
dc.identifier.doi10.1016/j.jmaa.2017.07.033
dc.identifier.issn0022-247X
dc.identifier.officialurlhttps://doi.org/10.1016/j.jmaa.2017.07.033
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.relatedurlhttp://www.sciencedirect.com/science/article/pii/S0022247X17306960
dc.identifier.urihttps://hdl.handle.net/20.500.14352/18191
dc.issue.number2
dc.journal.titleJournal of Mathematical Analysis and Applications
dc.language.isoeng
dc.page.final1039
dc.page.initial1013
dc.publisherElsevier
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//MTM2012-34341/ES/
dc.rights.accessRightsopen access
dc.subject.cdu514.7
dc.subject.keywordReal-valued uniformly continuous functions
dc.subject.keywordSamuel realcompactification
dc.subject.keywordLipschitz realcompactification
dc.subject.keywordBourbaki-boundedness
dc.subject.keywordBourbaki-completeness
dc.subject.keywordUniform Katetov-Shirota result
dc.subject.ucmGeometría diferencial
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleThe Samuel realcompactification of a metric space
dc.typejournal article
dc.volume.number456
dspace.entity.typePublication
relation.isAuthorOfPublicationd581a19d-4879-4fd7-b6a8-5c766ec13ba0
relation.isAuthorOfPublication272ad105-02a5-40c4-bc35-5bc93e9da06d
relation.isAuthorOfPublication.latestForDiscoveryd581a19d-4879-4fd7-b6a8-5c766ec13ba0

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Garrido21libre.pdf
Size:
322.21 KB
Format:
Adobe Portable Document Format

Collections