An Algorithmic Approach to Preference Representation
dc.contributor.author | Yáñez Gestoso, Francisco Javier | |
dc.contributor.author | Montero De Juan, Francisco Javier | |
dc.contributor.author | Gómez González, Daniel | |
dc.date.accessioned | 2023-06-20T09:38:01Z | |
dc.date.available | 2023-06-20T09:38:01Z | |
dc.date.issued | 2008 | |
dc.description | IEEE International Conference on Fuzzy Systems | |
dc.description.abstract | In a previous paper, the authors proposed an alternative approach to classical dimension theory, based upon a general | en |
dc.description.department | Depto. de Estadística e Investigación Operativa | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16186 | |
dc.identifier.citation | Yáñez, J., Montero, J., Gómez, D.: AN ALGORITHMIC APPROACH TO PREFERENCE REPRESENTATION. Int. J. Unc. Fuzz. Knowl. Based Syst. 16, 1-18 (2008). https://doi.org/10.1142/S0218488508005455 | |
dc.identifier.doi | 10.1142/S0218488508005455 | |
dc.identifier.issn | 0218-4885 | |
dc.identifier.officialurl | https//doi.org/10.1142/S0218488508005455 | |
dc.identifier.relatedurl | http://www.worldscinet.com/ijufks/16/16supp02/S0218488508005455.html | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50077 | |
dc.issue.number | Suppl. | |
dc.journal.title | International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems | |
dc.language.iso | eng | |
dc.page.final | 18 | |
dc.page.initial | 1 | |
dc.publisher | World Scientifc Publishing Company | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 004.8 | |
dc.subject.keyword | Fuzzy preferences | |
dc.subject.keyword | Preference representation | |
dc.subject.keyword | Multicriteria decision making | |
dc.subject.keyword | Dimension theory. | |
dc.subject.ucm | Lógica simbólica y matemática (Matemáticas) | |
dc.subject.unesco | 1102.14 Lógica Simbólica | |
dc.title | An Algorithmic Approach to Preference Representation | en |
dc.type | journal article | |
dc.volume.number | 16 | |
dcterms.references | A. Amo, D. Gomez, J. Montero and G. Biging, Relevance and redundancy in fuzzy classication systems, Mathware and Soft Computing 8 (2001) 203{216. A. Amo, J. Montero, G. Biging and V. Cutello, Fuzzy classi_cation systems, European Journal of Operational Research 156 (2004) 459{507. B. Dushnik and E. W. Miller, Partially ordered sets, American Journal of Mathematics 63 (1941) 600{610. J. Fodor and M. Roubens, Fuzzy Preference Modelling and Multicriteria Decision Support (Kluwer Academic Publishers, Dordrecht, 1994). D. Gomez, J. Montero and J. Yañez, A coloring algorithm for image classication, Information Sciences 176 (2006) 3645{3657. D. Gomez, J. Montero and J. Yañez, A graph coloring approach for image segmentation, Omega-International J. Management Science 35 (2007) 173{183. D. Gomez, J. Montero and J. Yañez, Decomposing preference relations, in Proc. FUZZ-IEEE Conference (IEEE Press, London, 2007), pp. 1251{1255. J. Gonzalez-Pachon, D. Gomez, J. Montero and J. Yañez, Searching for the dimension of binary valued preference relations, Int. J. Approximate Reasoning 33 (2003) 133{157. J. Gonzalez-Pachon, D. Gomez, J. Montero and J. Yañez, Soft dimension theory, Fuzzy Sets and Systems 137 (2003) 137{149. J. Montero, V. Lopez and D. Gomez, The role of fuzziness in decision making, Studies in Fuzziness and Soft Computing 215 (2007) 337{349. J. Montero and J. Tejada, Some problems on the denition of fuzzy preference relation, Fuzzy Sets and Systems 20 (1986) 45{53. J. Montero, J. Tejada and V. Cutello, A general model for deriving preference structures from data, European J. Operational Research 98 (1997) 98{110. P. K. Pattanaik, Voting and Collective Choice (Cambridge U.P., London, 1971). A. K. Sen, Collective Choice and Social Welfare (Holden-Day, San Francisco, 1970). S. Skiena, Cycles, stars, and wheels, Implementing Discrete Mathematics: Combina- torics and Graph Theory with Mathematica (Reading, MA, Addison-Wesley, 1990). W. T. Trotter, Combinatorics and partially ordered sets, Dimension Theory (The Johns Hopkins University Press, Baltimore and London, 1992). M. Yannakakis, On the complexity of the partial order dimension problem, SIAM J. Algebra and Discrete Mathematics 3 (1982) 351{358. J. Yañez and J. Montero, A poset dimension algorithm, J. Algorithms 30 (1999) 185{208. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5ce22aab-a4c1-4dfe-b8f9-78e09cbd2878 | |
relation.isAuthorOfPublication | 9e4cf7df-686c-452d-a98e-7b2602e9e0ea | |
relation.isAuthorOfPublication | 4dcf8c54-8545-4232-8acf-c163330fd0fe | |
relation.isAuthorOfPublication.latestForDiscovery | 5ce22aab-a4c1-4dfe-b8f9-78e09cbd2878 |
Download
Original bundle
1 - 1 of 1