Mejora de la precisión para el análisis de dependencias usando Maltparser para el castellano

dc.contributor.advisorGervás-Gómez Navarro, Pablo
dc.contributor.advisorFrancisco Gilmartín, Virginia
dc.contributor.advisorHerrera de la Cruz, Jesús
dc.contributor.authorBallesteros Martínez, Miguel
dc.date.accessioned2023-06-20T06:10:08Z
dc.date.available2023-06-20T06:10:08Z
dc.date.issued2010
dc.descriptionMáster en Sistemas Inteligentes, Facultad de Informática, Departamento de Ingeniería del Software e Inteligencia Artificial, curso 2009-2010
dc.description.abstractMaltparser es un generador de analizadores de dependencias contemporáneo basado en aprendizaje automático mediante el que se obtiene una gran precisión. Actualmente los resultados rondan el 80% de precisión (Labelled Attachment Score{LAS) para el castellano y parece que estos resultados son un límite que no se puede superar. En este trabajo se han realizado una serie de estudios sobre generadores de analizadores de dependencias en búsqueda de técnicas para mejorar este límite de facto de la precision. En primer lugar, se muestran una serie de ideas y experimentos basados en el tamaño del corpus de entrenamiento y/o longitud de las frases, y en segundo lugar se aborda la idea fundamental de este trabajo: el Analizador de N-Versiones, que consiste en combinar la acción de diferentes analizadores entrenados específicamente para diversas tareas y conseguir de esta manera mejorar la calidad overall en el análisis de dependencias sintáctico. [ABSTRACT] Maltparser is a contemporary dependency parsing machine learning-based system that shows a great accuracy. Nowadays the results are around 80%(Labelled Attachment Score{LAS) for Spanish parsing and it seems that is not posible to beat these results. In this work we did a few studies about dependency parsers to Find some techniques to improve this de facto limit of the accuracy. Firstly, we show some ideas and experiments based on the corpus size and/or sentences length, and finally we show the main idea of this work: the N-Version dependency parser, that is the idea to mix the action of some specific trained parsers, each parser is trained to achieve better accuracy in a specific task, and finally obtain better results in global dependency accuracy.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Informática
dc.description.refereedFALSE
dc.description.statusunpub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/11311
dc.identifier.urihttps://hdl.handle.net/20.500.14352/46238
dc.language.isospa
dc.page.total98
dc.rightsAtribución-NoComercial 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/es/
dc.subject.cdu004.8(043.3)
dc.subject.cdu81'322(043.3)
dc.subject.keywordProcesamiento de Lenguaje Natural (PLN)
dc.subject.keywordAprendizaje Automático
dc.subject.keywordAnálisis sintáctico de dependencias
dc.subject.keywordEntrenamiento basado en corpus
dc.subject.keywordMaltparser
dc.subject.keywordAnálisis Sintáctico del Castellano
dc.subject.keywordNatural Language Processing (NLP)
dc.subject.keywordMachine learning
dc.subject.keywordDependency parsing
dc.subject.keywordCorpus-based training
dc.subject.keywordSpanish parsing
dc.subject.ucmSistemas expertos
dc.titleMejora de la precisión para el análisis de dependencias usando Maltparser para el castellano
dc.typemaster thesis
dspace.entity.typePublication
relation.isAdvisorOfPublicatione698f00e-52e6-4104-8cc5-653c308b98c5
relation.isAdvisorOfPublication.latestForDiscoverye698f00e-52e6-4104-8cc5-653c308b98c5

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MIGUEL_BALLESTEROS_Memoria_Fin_Master.pdf
Size:
2.51 MB
Format:
Adobe Portable Document Format