Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Connections between ∞-Poincaré inequality, quasi-convexity, and N1,∞

Loading...
Thumbnail Image

Full text at PDC

Publication date

2009

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Centre de Recerca Matemàtica
Citations
Google Scholar

Citation

Abstract

We study a geometric characterization of ∞−Poincaré inequality. We show that a path-connected complete doubling metric measure space supports an ∞−Poincaré inequality if and only if it is thick quasi-convex. We also prove that these two equivalent properties are also equivalent to the purely analytic property that N1,∞(X) = LIP∞(X), where LIP∞(X) is the collection of bounded Lipschitz functions on X and N1,∞(X) is the Newton-Sobolev space studied in [DJ].

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections