Viscosity and self-diffusion of supercooled and stretched water from molecular dynamics simulations

dc.contributor.authorMontero De Hijes, Pablo
dc.contributor.authorSanz García, Eduardo Santiago
dc.contributor.authorJoly, Laurent
dc.contributor.authorValeriani, Chantal
dc.contributor.authorCaupin, Frederic
dc.date.accessioned2023-06-17T13:19:34Z
dc.date.available2023-06-17T13:19:34Z
dc.date.issued2018-09-07
dc.description© 2018 Author(s). P.M.H., E.S., and C.V. have been funded by Grant Nos. FIS2013/43209-P, FIS2016-78117-P, and FIS2016-78847-P of the MEC and the UCM/Santander Nos. 910570 and PR26/16-10B-2. P.M.H. acknowledges financial support from a FPI Ph.D. fellowship. L.J. acknowledges support from Institut Universitaire de France. This work was partially supported by CNRS (France) through a PICS program.
dc.description.abstractAmong the numerous anomalies of water, the acceleration of dynamics under pressure is particularly puzzling. Whereas the diffusivity anomaly observed in experiments has been reproduced in several computer studies, the parallel viscosity anomaly has received less attention. Here we simulate viscosity and the self-diffusion coefficient of the TIP4P/2005 water model over a broad temperature and pressure range. We reproduce the experimental behavior and find additional anomalies at negative pressure. The anomalous effect of pressure on dynamic properties becomes more pronounced upon cooling, reaching two orders of magnitude for viscosity at 220 K. We analyze our results with a dynamic extension of a thermodynamic two-state model, an approach which has proved successful in describing experimental data. Water is regarded as a mixture of interconverting species with contrasting dynamic behaviors, one being strong (Arrhenius) and the other fragile (non-Arrhenius). The dynamic parameters of the two-state models are remarkably close between experiment and simulations. The larger pressure range accessible to simulations suggests a modification of the dynamic two-state model, which in turn also improves the agreement with experimental data. Furthermore, our simulations demonstrate the decoupling between viscosity eta and self-diffusion coefficient D as a function of temperature T. The Stokes-Einstein relation, which predicts a constant D eta/T, is violated when T is lowered, in connection with the Widom line defined by an equal fraction of the two interconverting species. These results provide a unifying picture of thermodynamics and dynamics in water and call for experiments at negative pressure. Published by AIP Publishing.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educación y Ciencia (MEC)
dc.description.sponsorshipUniversidad Complutense de Madrid/Banco de Santander
dc.description.sponsorshipFPI Ph.D. fellowship
dc.description.sponsorshipInstitut Universitaire de France
dc.description.sponsorshipCNRS (France) through a PICS program
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/51148
dc.identifier.doi10.1063/1.5042209
dc.identifier.issn0021-9606
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.5042209
dc.identifier.relatedurlhttps://aip.scitation.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/13080
dc.issue.number9
dc.journal.titleJournal of chemical physics
dc.language.isoeng
dc.publisherAmer Inst Physics
dc.relation.projectID(FIS2013/43209-P; FIS2016-78117-P; FIS2016-78847-P)
dc.relation.projectIDUCM (910570)
dc.relation.projectIDPR26/16-10B-2
dc.rights.accessRightsopen access
dc.subject.cdu539.1
dc.subject.keywordStokes-Einstein relation
dc.subject.keywordLiquid water
dc.subject.keywordPressure-dependence
dc.subject.keywordDensity anomalies
dc.subject.keywordGlass-transition
dc.subject.keywordRelaxation
dc.subject.keywordModel
dc.subject.keywordMobility
dc.subject.keywordTemperature
dc.subject.keywordBreakdown
dc.subject.ucmFísica nuclear
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleViscosity and self-diffusion of supercooled and stretched water from molecular dynamics simulations
dc.typejournal article
dc.volume.number149
dspace.entity.typePublication
relation.isAuthorOfPublication549914c3-86fd-4c7e-91b2-8d8aac4bd3c6
relation.isAuthorOfPublication4ff7c61a-ac4c-4dda-b8c8-68e2a4e69802
relation.isAuthorOfPublication70e93697-1ddb-4497-977d-73fcf46c4837
relation.isAuthorOfPublication.latestForDiscovery70e93697-1ddb-4497-977d-73fcf46c4837
Download
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Valeriani04posprint.pdf
Size:
1.11 MB
Format:
Adobe Portable Document Format
Collections