Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Study of the activation energy for transport of water and methanol through a Nafion membrane

dc.contributor.authorGodino Gómez, María Paz
dc.contributor.authorBarragán García, Vicenta María
dc.contributor.authorGarcía Villaluenga, Juan Pedro
dc.contributor.authorIzquierdo Gil, María Amparo
dc.contributor.authorSeoane Rodríguez, Benjamín
dc.contributor.authorRuiz Bauzá, Carlos
dc.date.accessioned2023-06-20T03:31:34Z
dc.date.available2023-06-20T03:31:34Z
dc.date.issued2009-10-01
dc.description© 2009 Elsevier B.V. The authors of this study gratefully acknowledge financial support from Comunidad de Madrid and Universidad Complutense de Madrid under Project CCG06-UCM/MAT-1037.
dc.description.abstractThis study investigates the influence of different operating parameters in the transport of water and methanol through a Nafion membrane when it is used to separatewater fromamethanol–water solution. For this purpose, measurements of mass flux and concentration change have been performed at different values of circulation velocity, concentration of themethanol–water solutions and temperature conditions. From the experimental data, thewater and methanol partial fluxes have been estimated, and itwas found that the water flux is always lower than the methanol flux, but it cannot be neglected. Whereas total and methanol fluxes seem to have predictable and similar behaviors, the water flux seems to be less predictable and it exhibits a very distinct behavior. Methanol and water permeabilities have been calculated, and from these values the activation energy of methanol and water fluxes in the membrane has been estimated. The results have been discussed in terms of the methanol and water solubilities in the membrane.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20495
dc.identifier.doi10.1016/j.cej.2009.03.022
dc.identifier.issn1385-8947
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.cej.2009.03.022
dc.identifier.relatedurlhttp://pdn.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43714
dc.issue.number1
dc.journal.titleChemical Engineering Journal
dc.language.isoeng
dc.page.final25
dc.page.initial20
dc.publisherElsevier Science SA
dc.relation.projectIDCCG06-UCM/MAT-1037
dc.rights.accessRightsrestricted access
dc.subject.cdu536
dc.subject.keywordFuel-Cell Performance
dc.subject.keywordPolymer Electrolyte
dc.subject.keywordComposite Membranes
dc.subject.keywordDiffusion
dc.subject.keywordCrossover
dc.subject.keywordMixtures
dc.subject.keywordAlcohol
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleStudy of the activation energy for transport of water and methanol through a Nafion membrane
dc.typejournal article
dc.volume.number152
dcterms.references[1] C. Yang, S. Srinivasan, A.B. Bocarsly, S. Tulyani, J.B. Benziger, A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion compositemembranes, Journal of Membrane Science 237 (2007) 145–161. [2] G. Suresh, S. Sodoye, Y.M. Scindia, A.K. Pandey, A. Goswarri, Study on physical and electrostatic interactions of counterions in poly(perfluorosulfonic) acid matrix: characterization of diffusion properties of membrane using radiotracers, Electrochimica Acta 52 (2007) 5968–5974. [3] P. Scharfer, W. Schabel, M. Kind, Modelling of alcohol and water diffusion in fuel cell membranes-experimental validation by means of in situ Raman spectroscopy, Chemical Engineering Science 63 (2008) 4676–4684. [4] A. Heinzel, V.M. Barragán, A review of the state-of-the-art of the methanol crossover in directmethanol fuel cell, Journal of Power Sources 84 (1999) 70–74. [5] J. Cruickshank, K. Scott, The degree and effect of methanol crossover in the direct methanol fuel cell, Journal of Power Sources 10 (1998) 40–47. [6] Z.G. Shao, X.Wang, I.M. Hsing, Composite Nafion/polyvinyl alcohol membranes for direct methanol fuel cell, Journal of Membrane Science 210 (2002) 147–153. [7] V.M. Barragán, A. Heinzel, Estimation of the membrane methanol diffusion coefficient from open circuit voltage measurements in a direct methanol fuel cell, Journal of Power Sources 104 (2002) 66–72. [8] F. Bauer,M.W. Porada, Microstructural characterization of Zr-phosphate-Nafion membrane for direct methanol fuel cell (DMFC) application, Journal of Membrane Science 233 (2004) 141–149. [9] J. Kallo, J. Kamera,W. Lehnert, R. Von Helmolt, Cell voltage transients of a gasfeed direct methanol fuel cell, Journal of Power Sources 127 (2004) 181–186. [10] V. Gogel, T. Frey, Z. Yonsgheng, K.A. Friedrich, L. Jörinsen, J. Garche, Performance and methanol permeation of direct methanol fuel cell: dependence on operating conditions and an electrode structure, Journal of Power Sources 127 (2004) 172–180. [11] M. Shen, K. Scott, Power loss and its effect on fuel cell performance, Journal of Power Sources 148 (2005) 24–31. [12] H.L. Lin, T.L. Yu, L.N. Huang, L.C. Chen, K.S. Shen, G.B. Jung, Nafion/PTFE composite membranes for direct methanol fuel cell applications, Journal of Power Sources 150 (2005) 11–19. [13] W. Lee, H. Kim, T.K. Kim, H. Chang, Nafion based organic/inorganic composite membrane for air-breathing direct methanol fuel cells, Journal of Membrane Science 292 (2007) 29–34. [14] M.P. Godino, V.M. Barragán, J.P.G. Villaluenga, C. Ruiz-Bauzá, B. Seoane, Water and methanol transport in Nafion membranes with different cationic forms. 1. Alkali monovalent cations, Journal of Power Sources 160 (2006) 181– 186. [15] V.M. Barragán, C. Ruiz-Bauzá, J.P.G. Villaluenga, B. Seoane, Transport of methanol and water through Nafion membrane, Journal of Power Sources. 130 (2004) 22–29. [16] J.P.G. Villaluenga, B. Seoane, V.M. Barragán, C. Ruiz-Bauzá, Thermo-osmosis of mixtures of water and methanol through a Nafionmembrane, Journal of Membrane Science 274 (2006) 116–122. [17] J. DïAns, H. Surawsky, C. Synowietz, Densities of liquid systems and their capacities Numerical Data and Functional Relationships in Science and Technology. Group IV. Macroscopic and Technical Properties of Matter, vol. 1, Springer, New York, 1977. [18] S. Park, Y. Yamazaki, Low water/methanol permeable Nafion/CHP organicinorganic composite membrane with high crystallinity, European Polymer Journal 42 (2006) 375–385. [19] V. Tricoli, J. Carretta, Bartolozzi, A comparative investigation of proton and methanol transport in fluorinated ionomeric membranes, Journal of Electrochemistry Society 147 (2000) 286–290. [20] J. Lobato, P. Cañizares, M.A. Rodrigo, J.J. Linares, J. Fernández-Fragua, Application of sterion (R) membrane as a polymer electrolyte for DMFCs, Chemical Engineering Science 61 (2006) 4773–4782. [21] F. Lufrano, I. Gatto, P. Staiti, V. Antonucci, E. Passalacqua, Sulfonated polysulfone ionomer membranes for fuel cells, Solid State Ionics 145 (2001) 47–51. [22] K.I. Okamoto, Y. Yin, O. Yamada, M.N. Islam, T. Honda, T. Mishima, Y. Suto, K. Tanaka, H. Kita, Methanol permeability and proton conductivity of sulfonated co-polymide membranes, Journal of Membrane Science 258 (2005) 115–122. [23] H.A. Every, M.A. Hickner, J.E. Mc Grath, T.A. Zawodzinski, An NMR study of methanol diffusion in polymerelectrolyte fuel cellmembranes, Journal ofMembrane Science 250 (2005) 183–188. [24] L. Chaabane, G. Bulvestr, C. Innocent, G. Pourcelly, B. Audair, Physicochemical characterization of ion-exchangemembranes in water–methanol mixtures, European Polymer Journal 41 (2006) 1403–1416
dspace.entity.typePublication
relation.isAuthorOfPublicationd2c307ae-39ce-419e-a520-2e71b0d84e09
relation.isAuthorOfPublication767d7957-0d58-4121-ab42-43d9165389a9
relation.isAuthorOfPublication7577a695-65ee-44e1-b7aa-8945ac183fb5
relation.isAuthorOfPublication89cfc24c-28fa-46fc-9b17-8eafe78b3a89
relation.isAuthorOfPublication.latestForDiscoveryd2c307ae-39ce-419e-a520-2e71b0d84e09

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
BARRAGÁN4NO.pdf
Size:
683.45 KB
Format:
Adobe Portable Document Format

Collections