Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A barrelledness criterion for C0(E)

dc.contributor.authorMendoza Casas, José
dc.date.accessioned2023-06-20T17:02:00Z
dc.date.available2023-06-20T17:02:00Z
dc.date.issued1993
dc.description.abstractDenote by C0(E) the linear space of all sequences in E which converge to zero in E endowed with its natural topology. A. Marquina and J. M. Sanz Serna [same journal 31 (1978/79), 589–596; MR0531574 (80i:46010)] gave necessary and sufficient conditions to ensure the quasibarrelledness of C0(E), namely: (i) E is quasibarrelled and (ii) the strong dual of E satisfies condition (B) of Pietsch. Moreover, if E is complete in the sense of Mackey, (i) and (ii) characterize the barrelledness of C0(E). Even in the absence of completeness in the sense of Mackey, the last result is true as the article under review shows by a clever use of a "sliding-hump'' technique. Interesting consequences of those results in the theory of tensor products and spaces of vector-valued continuous functions can be found in a recent paper by A. Defant and W. Govaerts ["Tensor products and spaces of vector-valued continuous functions'', Manuscripta Math., to appear] and in the monograph of J. Schmets [Spaces of vector-valued continuous functions, Lecture Notes in Math., 1003, Springer, Berlin, 1983].
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16889
dc.identifier.doi10.1007/BF01192764
dc.identifier.issn0003-889X
dc.identifier.officialurlhttp://www.springerlink.com/content/hm561157260064x8/
dc.identifier.relatedurlhttp://www.springerlink.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57659
dc.issue.number1
dc.journal.titleArchiv der Mathematik
dc.language.isoeng
dc.page.final158
dc.page.initial156
dc.publisherBirkhäuser Verlag
dc.rights.accessRightsrestricted access
dc.subject.cdu515.73
dc.subject.keywordbarrelledness
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleA barrelledness criterion for C0(E)
dc.typejournal article
dc.volume.number40
dcterms.referencesA. Marquina andJ. M. Sanz Serna,Barrelledness conditions onC 0(E). Arch. Math.31, 589-596 (1978). J.Mentdoza, Necessary and sufficient conditions forC(X; E) to be barrelled or infrabarrelled (to appear in Simon Stevin). A.Pietsch, Nuclear Locally Convex Spaces. Berlin 1972.
dspace.entity.typePublication
relation.isAuthorOfPublication3fdf00ed-ed02-482c-a736-bb87c2753a89
relation.isAuthorOfPublication.latestForDiscovery3fdf00ed-ed02-482c-a736-bb87c2753a89

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mendoza15.pdf
Size:
105.01 KB
Format:
Adobe Portable Document Format

Collections