Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Cosmology with moving dark energy and the CMB quadrupole

dc.contributor.authorBeltrán Jiménez, José
dc.contributor.authorLópez Maroto, Antonio
dc.date.accessioned2023-06-20T10:47:22Z
dc.date.available2023-06-20T10:47:22Z
dc.date.issued2007-07-18
dc.description© 2007 The American Physical Society. We would like to thank A. de la Cruz Dombriz for useful comments. This work has been partially supported by DGICYT (Spain) under Project No. FPA 2004-02602 and No. FPA 2005-02327. The latter project has supported J. B. under the grant No. BES-2006-12059 by Ministerio de Educación y Ciencia.
dc.description.abstractWe study the consequences of a homogeneous dark energy fluid having a nonvanishing velocity with respect to the matter and radiation large-scale rest frames. We consider homogeneous anisotropic cosmological models with four fluids (baryons, radiation, dark matter, and dark energy) whose velocities can differ from each other. Performing a perturbative calculation up to second order in the velocities, we obtain the contribution of the anisotropies generated by the fluids motion to the CMB quadrupole and compare with observations. We also consider the exact problem for arbitrary velocities and solve the corresponding equations numerically for different dark energy models. We find that models whose equation of state is initially stiffer than radiation, as for instance some tracking models, are unstable against velocity perturbations, thus spoiling the late-time predictions for the energy densities. In the case of scaling models, the contributions to the quadrupole can be non-negligible for a wide range of initial conditions. We also consider fluids moving at the speed of light (null fluids) with positive energy and show that, without assuming any particular equation of state, they generically act as a cosmological constant at late times. We find the parameter region for which the models considered could be compatible with the measured (low) quadrupole.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT (Spain)
dc.description.sponsorshipMinisterio de Educación y Ciencia
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27159
dc.identifier.doi10.1103/PhysRevD.76.023003
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.76.023003
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51224
dc.issue.number2
dc.journal.titlePhysical Review D
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDFPA 2004-02602
dc.relation.projectIDFPA 2005-02327
dc.relation.projectIDBES-2006-12059
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordAnisotropic universe
dc.subject.keywordPolarization
dc.subject.keywordRadiation
dc.subject.keywordFluids
dc.subject.keywordSpace
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleCosmology with moving dark energy and the CMB quadrupole
dc.typejournal article
dc.volume.number76
dcterms.references[1] A. G. Riess et al., Astrophys. J. 607, 665 (2004). [2] P. Astier et al., Astron. Astrophys. 447, 31 (2006). [3] D. N. Spergel et al., arXiv:astro-ph/0603449; G. Hinshaw et al., arXiv:astro-ph/0603451. [4] P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003). [5] E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006). [6] S. Nesseris and L. Perivolaropoulos, Phys. Rev. D 70, 043531 (2004); 72, 123519 (2005); B. A. Bassett, P. S. Corasaniti, and M. Kunz, Astrophys. J. 617, L1 (2004); G. Barro Calvo and A. L. Maroto, Phys. Rev. D 74, 083519 (2006). [7] C. Wetterich, Nucl. Phys. B302, 668 (1988); R. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998). [8] G. Dvali, G. Gabadadze, and M. Porrati, Phys. Lett. B 485, 208 (2000); L. Amendola, R. Gannouji, D. Polarski, and S. Tsujikawa, Phys. Rev. D 75, 083504 (2007). [9] R. Trotta and R. Bower, Astron. Geophys. 47, 4.20 (2006). [10] A. Albrecht et al., arXiv:astro-ph/0609591. [11] A. L. Maroto, J. Cosmol. Astropart. Phys. 05 (2006) 015. [12] A. L. Maroto, Int. J. Mod. Phys. D 15, 2165 (2006); AIP Conf. Proc. 878, 240 (2006). [13] J. D. Barrow, Phys. Rev. D 55, 7451 (1997). [14] E. F. Bunn, P. Ferreira, and J. Silk, Phys. Rev. Lett. 77, 2883 (1996). [15] A. de Oliveira-Costa, M. Tegmark, M. Zaldarriaga, and A. Hamilton, Phys. Rev. D 69, 063516 (2004); D. J. Schwarz, G. D. Starkman, D. Huterer, and C. J. Copi, Phys. Rev. Lett. 93, 221301 (2004). [16] K. Land and J. Magueijo, Phys. Rev. Lett. 95, 071301 (2005). [17] P. S. Letelier, Phys. Rev. D 22, 807 (1980); S. S. Bayin, Astrophys. J. 303, 101 (1986). [18] V. F. Mukhanov, H.A. Feldman, and R. H. Brandenberger, Phys. Rep. 215, 203 (1992). [19] S. Dodelson, Modern Cosmology (Academic, New York, 2003). [20] M. Giovannini, Int. J. Mod. Phys. D 14, 363 (2005). [21] L. Campanelli, P. Cea, and L. Tedesco, Phys. Rev. Lett. 97, 131302 (2006). [22] S. Capozziello, A. Melchiorri, and A. Schirone, Phys. Rev. D 70, 101301 (2004); E. J. Copeland, A. R. Liddle, and D. Wands, Phys. Rev. D 57, 4686 (1998); P. G. Ferreira and M. Joyce, Phys. Rev. D 58, 023503 (1998). [23] E.W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley, Reading, MA, 1990). [24] P. J. Steindhardt, L. Wang, and I. Zlatev, Phys. Rev. D 59, 123504 (1999). [25] M. J. Rees, Astrophys. J. Lett. 153, L1 (1968); M. M. Basko and A. G. Polnarev, Mon. Not. R. Astron. Soc. 191, 207 (1980).
dspace.entity.typePublication
relation.isAuthorOfPublicatione14691a1-d3b0-47b7-96d5-24d645534471
relation.isAuthorOfPublication.latestForDiscoverye14691a1-d3b0-47b7-96d5-24d645534471

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MarotoAL38libre.pdf
Size:
492.58 KB
Format:
Adobe Portable Document Format

Collections