Vibrations in glasses and Euclidean random matrix theory

dc.contributor.authorGrigera, T.S.
dc.contributor.authorMartín Mayor, Víctor
dc.contributor.authorParisi, G.
dc.contributor.authorVerrocchio, P.
dc.date.accessioned2023-06-20T20:28:13Z
dc.date.available2023-06-20T20:28:13Z
dc.date.issued2002-03-11
dc.description© 2002 IOP Publishing Ltd. International Conference on Scaling Concepts and Complex Systems (2001. Mérida, México)
dc.description.abstractWe study numerically and analytically a simple off-lattice model of scalar harmonic vibrations by means of Euclidean random matrix theory. Since the spectrum of this model shares the most puzzling spectral features with the high-frequency domain of glasses (non-Rayleigh broadening of the Brillouin peak, boson peak and secondary peak), the Euclidean random matrix theory provide a single and fairly simple theoretical framework to their explanation.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/46778
dc.identifier.doi10.1088/0953-8984/14/9/306
dc.identifier.issn0953-8984
dc.identifier.officialurlhttp://dx.doi.org/10.1088/0953-8984/14/9/306
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.relatedurlhttps://arxiv.org/abs/cond-mat/0110441v1
dc.identifier.urihttps://hdl.handle.net/20.500.14352/60322
dc.issue.number9
dc.journal.titleJournal of physics-condensed matter
dc.language.isoeng
dc.page.final2179
dc.page.initial2167
dc.publisherIop Publishing Ltd
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordFrequency propagationg modes
dc.subject.keywordVitreous silica
dc.subject.keywordBoson peak
dc.subject.keywordRelaxation processes
dc.subject.keywordForming liquids
dc.subject.keywordDensified SiO(2)
dc.subject.keywordScattering
dc.subject.keywordDynamics
dc.subject.keywordExcitations
dc.subject.keywordLocalization.
dc.subject.ucmFísica-Modelos matemáticos
dc.titleVibrations in glasses and Euclidean random matrix theory
dc.typejournal article
dc.volume.number14
dspace.entity.typePublication
relation.isAuthorOfPublication061118c0-eadf-4ee3-8897-2c9b65a6df66
relation.isAuthorOfPublication.latestForDiscovery061118c0-eadf-4ee3-8897-2c9b65a6df66

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MartínMayorV LIBRE 27 PREPRINT.pdf
Size:
392.81 KB
Format:
Adobe Portable Document Format

Collections