Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Design of superachromatic quarter-wave retarders in a broad spectral range

dc.contributor.authorHerrera Fenández, José María
dc.contributor.authorVilas, José Luis
dc.contributor.authorSánchez Brea, Luis Miguel
dc.contributor.authorBernabeu Martínez, Eusebio
dc.date.accessioned2023-06-18T06:49:36Z
dc.date.available2023-06-18T06:49:36Z
dc.date.issued2015-11-20
dc.description© 2015 Optical Society of America. The authors thank Maite Irigoyen for her encouragement and many useful comments during the preparation of this work. Funding: Direccion General de Universidades e Investigacion, Comunidad de Madrid (Spain) (SEGVAUTO-TRIES CM S2013/MIT-2713); Ministerio de Economia y Competitividad (MINECO) (DPI2011-27851).
dc.description.abstractA superachromatic quarter-wave retarder using an arbitrary number of waveplates in a broadband spectral range has been proposed. Their design is based on the optimization of a merit function, the achromatism degree (AcD), which represents a global behavior metric for the retardation. By means of this technique, the thickness and azimuth of each waveplate is determined. The achromatism degree is a measure of the distance between the overall retardation and a target retardation weighted by the spectrum of the incident light. We report on a particular case where all waveplates are made of quartz. As application examples, the design of a quarter-wave retarder using two, three, and four waveplates in the spectral ranges of 500-700 nm and 400-1000 nm was studied. The numerical results show that for these ranges, the best designs obtained present a maximum difference of 0.013 degrees and 0.010 degrees with respect to the target retardation, respectively. In addition, an analysis of their achromatic stability is presented. These results can be applied in the aerospace industry, spectroscopic ellipsometry, and spectrogoniometry, among others.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMinisterio de Economia y Competitividad (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/35472
dc.identifier.doi10.1364/AO.54.009758
dc.identifier.issn1559-128X
dc.identifier.officialurlhttp://dx.doi.org/10.1364/AO.54.009758
dc.identifier.relatedurlhttps://www.osapublishing.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24322
dc.issue.number33
dc.journal.titleApplied optics
dc.language.isoeng
dc.page.final9762
dc.page.initial9758
dc.publisherOptical Society Of America
dc.relation.projectIDSEGVAUTO- TRIES- CM (S2013/MIT-2713)
dc.relation.projectIDDPI2011-27851
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordPlates
dc.subject.keywordBirefringence
dc.subject.keywordDispersion
dc.subject.keywordWaveplate
dc.subject.keywordCalculus
dc.subject.keywordCrystal
dc.subject.keywordLight
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleDesign of superachromatic quarter-wave retarders in a broad spectral range
dc.typejournal article
dc.volume.number54
dcterms.references1. D. H. Goldstein, Polarized Light (CRC Press, 2010). 2. D. Clarke and J. F. Grainger, Polarized Light and Optical Measurement: International Series of Monographs in Natural Philosophy (Elsevier, 2013), Vol. 35. 3. D. S. Kliger and J. W. Lewis, Polarized Light in Optics and Spectroscopy (Elsevier, 2012). 4. S. Pancharatnam, “Achromatic combinations of birefringent plates,” Proc. Indian Acad. Sci. A 41, 137–144 (1955). 5. R. King, “Quarter-wave retardation systems based on the Fresnel rhomb principle,” J. Sci. Instrum. 43, 617–622 (1966). 6. R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 488–493 (1941). 7. S. N. Savenkov, “Jones and Mueller matrices: structure, symmetry relations and information content,” in Light Scattering Reviews 4 (Springer, 2009), pp. 71–119. 8. P. Violino, “Polariseur circulaire reglable sur une large domaine de longueurs d onde,” Revue Optique 44, 109–114 (1965). 9. D. Clarke, “Achromatic halfwave plates and linear poliarization rotators,” J. Mod. Opt. 14, 343–350 (1967). 10. P. Hariharan and D. Malacara, “A simple achromatic half-wave retarder,” J. Mod. Opt. 41, 15–18 (1994). 11. P. Hariharan, “Achromatic retarders using quartz and mica,” Meas. Sci. Technol. 6, 1078–1079 (1995). 12. P. Hariharan, “Broad-band apochromatic retarders: choice of materials,” Opt. Laser Technol. 34, 509–511 (2002). 13. S. Shen, J. She, and T. Tao, “Optimal design of achromatic true zero-order waveplates using twisted nematic liquid crystal,” J. Opt. Soc. Am. A 22, 961–965 (2005). 14. Y.-J. Jen, M.-J. Lin, S.-K. Yu, and C.-C. Chen, “Extended broadband achromatic reflective-type waveplate,” Opt. Lett. 37, 4296–4298 (2012). 15. Y.-J. Jen, A. Lakhtakia, C.-W. Yu, C.-F. Lin, M.-J. Lin, S.-H. Wang, and J.-R. Lai, “Biologically inspired achromatic waveplates for visible light,” Nat. Commun. 2, 363 (2011). 16. H. Kikuta, Y. Ohira, and K. Iwata, “Achromatic quarter-wave plates using the dispersion of form birefringence,” Appl. Opt. 36, 1566–1572 (1997). 17. D.-E. Yi, Y.-B. Yan, H.-T. Liu, Si-Lu, and G.-F. Jin, “Broadband achromatic phase retarder by subwavelength grating,” Opt. Commun. 227, 49–55 (2003). 18. J.-B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31, 265–267 (2006). 19. J. Ma, J.-S. Wang, C. Denker, and H.-M. Wang, “Optical design of multilayer achromatic waveplate by simulated annealing algorithm,” Chin. J. Astron. Astrophys. 8, 349–361 (2008). 20. Z. Chen, Y. Gong, H. Dong, T. Notake, and H. Minamide, “Terahertz achromatic quarter wave plate: design, fabrication, and characterization,” Opt. Commun. 311, 1–5 (2013). 21. P. Hariharan and P. Ciddor, “Broad-band superachromatic retarders and circular polarizers for the UV, visible and near infrared,” J. Mod. Opt. 51, 2315–2322 (2004). 22. M. Emam-Ismail, “Retardation calculation for achromatic and apochromatic quarter and half wave plates of gypsum based birefringent crystal,” Opt. Commun. 283, 4536–4540 (2010). 23. A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Achromatic quarter-wave plate using crystalline quartz,” Appl. Opt. 51, 1976–1980 (2012). 24. H. Hurwitz, Jr. and R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 493–495 (1941). 25. J. L. Vilas, E. Bernabeu, L. M. Sanchez-Brea, and R. EspinosaLuna, “Circularly polarized light with high degree of circularity and low azimuthal error sensitivity,” Appl. Opt. 53, 3393–3398 (2014). 26. J. L. Vilas, L. M. Sanchez-Brea, and E. Bernabeu, “Optimal achromatic wave retarders using two birefringent wave plates,” Appl. Opt. 52, 1892–1896 (2013). 27. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999). 28. M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. Van Stryland, Handbook of Optics, Vol. 4, Optical properties of materials Nonlinear Optics, Quantum Optics (Optical Society of America, 2009). 29. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the nelder-mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998). 30. MATLABv2014b, “fminsearch,” http://es.mathworks.com/help/matlab/ ref/fminsearch.html.
dspace.entity.typePublication
relation.isAuthorOfPublication72f8db7f-8a25-4d15-9162-486b0f884481
relation.isAuthorOfPublication.latestForDiscovery72f8db7f-8a25-4d15-9162-486b0f884481

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SBrea 01 Postprint.pdf
Size:
1.57 MB
Format:
Adobe Portable Document Format

Collections