Representations of links in relation with branched double coverings. (Spanish: Representaciones de enlaces en relación con recubridores dobles ramificados)
| dc.contributor.author | Montesinos Amilibia, José María | |
| dc.date.accessioned | 2023-06-21T02:06:19Z | |
| dc.date.available | 2023-06-21T02:06:19Z | |
| dc.date.issued | 1974 | |
| dc.description.abstract | Let L⊆S3 be a link and let t:L→S3 be its 2-fold branched cyclic cover. A represented link (L,ω) is a link together with a transitive representation of π=π1(S3−L) in Sn, the symmetric group of order n!. In his thesis ["On branched covers over a knot and the Poincare conjecture'' (Spanish), Ph.D. Thesis, Univ. Complutense de Madrid, Madrid, 1971] the author describes certain geometric moves (D) and conjectures: (1) Given (L,ω) it is possible to find a new link (L∗,ω∗) by a sequence of moves (D) such that L∗ splits into (L1,ω1),⋯,(Lr,ωr) and the ωi are representations to S2. This can actually be weakened as can be seen from a paper by R. H. Fox [Rev. Mat. Hisp.-Amer. (4) 32 (1972), 158–166;]. For a long time the author has also wondered whether (2) π1(L)≠1 if L is not trivial. Together, (1) and (2) imply the Poincaré conjecture. The paper under review is a study of (2): if π has a transitive representation ω:π→Sn (n≥3) so that for every meridian m of L, ω(m) is of order two then ω defines a transitive representation ψ:π/⟨m2⟩→Sn. From an observation of Fox [op. cit.] π1(L) is always a subgroup of π/⟨m2⟩ of order two. Thus, since ψ is transitive, its image must have order >2 and π1(L)≠1. In this way (2) is changed into a question of existence of transitive representations ω with ω(m)2=1. Given ω, let p:M(L,ω)→S3 be the corresponding branched cover of S3. Actually (1) can be weakened to links where π1(M)=1. In this paper the author first shows that if Fg is the oriented surface of genus g, S1×Fg is of the form M(L,ω) for representations ω:π→S4 with image the Klein group. More generally such Kleinian representations yield maps g:M(L,ω)→L which are ordinary double coverings and p=tg. Next the author studies dihedral representations ω:π→Dr (which exist if and only if H1(L) has an r-cyclic representation φ). The author defines two transitive representations α:Dr→Sr and β:Dr→S2r; let γ:π1(L)→H1(L) be abelianization. If M=M(L,αω) and N=M(L,βω) then N is a 2-fold branched cover of M and an r-fold covering space of L corresponding to the kernel of φγ:π1(L)→Zr. {There is a misprint on line 1, p. 154, where ω is a representation of π on Dp. It is unfortunate that the author uses so many similar Fraktur characters; they make the reading difficult and that accounts for the misprint}. | |
| dc.description.department | Depto. de Álgebra, Geometría y Topología | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.refereed | TRUE | |
| dc.description.status | pub | |
| dc.eprint.id | https://eprints.ucm.es/id/eprint/22012 | |
| dc.identifier.issn | 0010-0757 | |
| dc.identifier.officialurl | http://www.collectanea.ub.edu/index.php/Collectanea/article/view/3427/4107 | |
| dc.identifier.relatedurl | http://www.collectanea.ub.edu/index.php/Collectanea/index | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/64859 | |
| dc.issue.number | 2 | |
| dc.journal.title | Collectanea mathematica | |
| dc.language.iso | spa | |
| dc.page.final | 157 | |
| dc.page.initial | 145 | |
| dc.publisher | Springer | |
| dc.rights.accessRights | restricted access | |
| dc.subject.cdu | 514.144 | |
| dc.subject.keyword | branched double coverings | |
| dc.subject.ucm | Geometria algebraica | |
| dc.subject.unesco | 1201.01 Geometría Algebraica | |
| dc.title | Representations of links in relation with branched double coverings. (Spanish: Representaciones de enlaces en relación con recubridores dobles ramificados) | |
| dc.type | journal article | |
| dc.volume.number | 25 | |
| dcterms.references | H. S. M. COXETER & W. O. J. MOSER: Generaloys and Relations for discrete groups, Ergebnisse der Mathematik, Band 14, 1965. R. H. Fox: «A quick trip throug knot theorp Topology of 3-manifolds and related topies, Englewood Cliffs, N.J, (1962). 120-167. R. H. Fox: «Construction of simply connected 3-manifolds» Topology of 3-Manifolds and related topics, Inglewood Cliffs (1962) 213-216. R, H. Fox: «A note on branched cyclic coverings of spheres» Revista Mat.Hisp.-Amer. 4° serie 32 (1972) 158-166. J. M. MONTESINOS: «Reducción de la Conjetura de Poincaré a otras conjeturas geométricas» Revista Mat.Hisp.-Amer, 4° serie 32 (1972) 33-51. J. M, MONTESINOS: «Una familia infinita de nudos representados no separables» Revista Mat. Hisp.-Amer. 4º serie 33 (1973) 32-35. J. M. MONTESINOS: «Variedades de Seifert que son recubridores cíclicos ramificados de dos hojas» Bol. Soc. mat. Mexicana. 18 (1973) 1-32. H. SCHUBERT: «Knoten mit zwei Brückem» Math. Z. 65 (1956) .133-170. F, WALDHAUSEN: «Über Involutionen der 3-Sphare» Topology, 8 (1969) 81-91, | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 7097502e-a5b0-4b03-b547-bc67cda16ae2 | |
| relation.isAuthorOfPublication.latestForDiscovery | 7097502e-a5b0-4b03-b547-bc67cda16ae2 |
Download
Original bundle
1 - 1 of 1

