Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

The equalizer and the lexicographical solutions for cooperative fuzzy games: characterization and properties

dc.contributor.authorMolina Ferragut, Elisenda
dc.contributor.authorTejada Cazorla, Juan Antonio
dc.date.accessioned2023-06-20T16:55:29Z
dc.date.available2023-06-20T16:55:29Z
dc.date.issued2002-02-01
dc.description.abstractIn this paper we analyze the lexicographical solution for fuzzy TU games, we study its properties and obtain a characterization. The lexicographical solution was introduced by Sakawa and Nishizaki (Fuzzy Sets and Systems 61 (1994) 265-275) as a solution for crisp TU games, and then extended as a value for fuzzy TU games. We approach the problem by means of the close relationship that exists between the lexicographical solution for crisp TU games and the least square nucleolus, a crisp value defined by Ruiz et al. (Internat. J. Game Theory 25 (1996) 113-134). Previously, and also based on this relationship, we axiomatically characterize the equalizer solution for fuzzy TU games. Both values, the equalizer and the lexicographical solutions, are based on the consideration of a measure of dissatisfaction of players rather than coalitions.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15939
dc.identifier.doi10.1016/S0165-0114(01)00023-9
dc.identifier.issn0165-0114
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0165011401000239
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57437
dc.issue.number3
dc.journal.titleFuzzy Sets and Systems
dc.language.isoeng
dc.page.final387
dc.page.initial369
dc.publisherElsevier Science Bv
dc.rights.accessRightsrestricted access
dc.subject.cdu519.816
dc.subject.keywordDecision making
dc.subject.keywordFuzzy TU games
dc.subject.keywordFuzzy coalitions
dc.subject.keywordCoalition excess
dc.subject.keywordPlayer excess
dc.subject.keywordLexicographical solution
dc.subject.keywordLeast square nucleolus and prenucleolus
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco1207 Investigación Operativa
dc.titleThe equalizer and the lexicographical solutions for cooperative fuzzy games: characterization and properties
dc.typejournal article
dc.volume.number125
dcterms.referencesJ.P. Aubin, Coeur et valeur des jeux Tous Ua paiements latVeraux, C.R. Acad. Sci. Paris 279 A (1974) 891–894. J.P. Aubin, Mathematical Methods of Game and Economic Theory, North-Holland, Amsterdam, 1980. J.P. Aubin, Cooperative fuzzy games, Math. Oper. Res. 6 (1981) 1–13. J.F. Banzhaf, Weighted voting doesn’t work: a mathematical analysis, Rutgers Law Rev. 19 (1965) 317–343. A. Billot, Fuzzy convexity and peripheral core of an exchange economy represented as a fuzzy game, in: J. Kacprzyk, M. Fedrizzi (Eds.), Multipersons Decision Making Models using Fuzzy Sets and Possibility Theory, Kluwer, Dordrecht, 1990. D. Butnariu, Fuzzy games: a description of the concept, Fuzzy Sets and Systems 1 (1978) 181–192. J.S. Coleman, Control of collectivities and the power of a collectivity to act, in: B. Lieberman (Ed.), Social Choice, Gordon and Breach, London, 1971. S. Hart, A. Mas-Colell, Potential, value and consistency, Econometrica 57 (1989) 589–614. G. Owen, Multilinear extensions of games, Manag. Sci. 18 (1972) 64–79. L.M. Ruiz, F. Valenciano, J.M. Zarzuelo, The least square prenucleolus and the least square nucleolus. Two values for TU games based on the excess vector, Internat. J. Game Theory 25 (1996) 113–134. M. Sakawa, I. Nishizaki, A lexicographical concept in an n-person cooperative fuzzy game, Fuzzy Sets and Systems 61 (1994)265–275. D. Schmeidler, The nucleolus of a characteristic function game, SIAM J. Appl. Math. 17 (1969) 1163–1170. L.S. Shapley, A value for n-person games, in: H.W. Kuhn, A.W. Tucker (Eds.), Annals of Mathematical Studies, Vol. 28, Academic Press, Princeton, 1953, pp. 307–317. L.S. Shapley, M. Shubik, On market games, J. Econom. Theory 1 (1969) 9–25. A.I. Sobolev, The functional equations that give the payoIs of the players in an n-person game, Math. Methods Social Sci. 6 (1975) 94–151. J. Tejada, Juegos Difusos, Tesis Doctorales 171=92, Universidad Complutense, Madrid, 1986. H.P. Young, Monotonic solutions of cooperative games, Internat. J. Game Theory 14 (1985) 65–72.
dspace.entity.typePublication
relation.isAuthorOfPublication288a087a-7833-47ce-a8a6-f686293ac375
relation.isAuthorOfPublication77359969-4313-4334-adef-1c2d7413fbb5
relation.isAuthorOfPublication.latestForDiscovery288a087a-7833-47ce-a8a6-f686293ac375

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Tejada06.pdf
Size:
173.72 KB
Format:
Adobe Portable Document Format

Collections