Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Diagnosis of Alzheimer's disease and behavioural variant frontotemporal dementia with machine learning‐aided neuropsychological assessment using feature engineering and genetic algorithms

dc.contributor.authorGarcía‐Gutiérrez, Fernando
dc.contributor.authorDelgado Álvarez, Alfonso
dc.contributor.authorDelgado‐Alonso, Cristina
dc.contributor.authorDíaz‐Álvarez, Josefa
dc.contributor.authorPytel Córdoba, Vanesa
dc.contributor.authorValles‐Salgado, María
dc.contributor.authorGil Idoate, María José
dc.contributor.authorHernández Lorenzo, Laura
dc.contributor.authorMatías-Guiu Guía, Jorge
dc.contributor.authorAyala Rodrigo, José Luis
dc.contributor.authorMatias-Guiu Antem, Jordi
dc.date.accessioned2024-02-07T11:06:28Z
dc.date.available2024-02-07T11:06:28Z
dc.date.issued2022
dc.description.abstractBackground Neuropsychological assessment is considered a valid tool in the diagnosis of neurodegenerative disorders. However, there is an important overlap in cognitive profiles between Alzheimer's disease (AD) and behavioural variant frontotemporal dementia (bvFTD), and the usefulness in diagnosis is uncertain. We aimed to develop machine learning-based models for the diagnosis using cognitive tests. Methods Three hundred and twenty-nine participants (170 AD, 72 bvFTD, 87 healthy control [HC]) were enrolled. Evolutionary algorithms, inspired by the process of natural selection, were applied for both mono-objective and multi-objective classification and feature selection. Classical algorithms (NativeBayes, Support Vector Machines, among others) were also used, and a meta-model strategy. Results Accuracies for the diagnosis of AD, bvFTD and the differential diagnosis between them were higher than 84%. Algorithms were able to significantly reduce the number of tests and scores needed. Free and Cued Selective Reminding Test, verbal fluency and Addenbrooke's Cognitive Examination were amongst the most meaningful tests. Conclusions Our study found high levels of accuracy for diagnosis using exclusively neuropsychological tests, which supports the usefulness of cognitive assessment in diagnosis. Machine learning may have a role in improving the interpretation and test selection.eng
dc.description.departmentDepto. de Psicobiología y Metodología en Ciencias del Comportamiento
dc.description.facultyFac. de Psicología
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipJunta de Extremadura
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipMinisterio de Economía, Comercio y Empresa (España)
dc.description.sponsorshipInstituto de Salud Carlos III
dc.description.statuspub
dc.identifier.citationGarcia-Gutierrez F, Delgado-Alvarez A, Delgado-Alonso C, et al. Diagnosis of Alzheimer's disease and behavioural variant frontotemporal dementia with machine learning-aided neuropsychological assessment using feature engineering and genetic algorithms. Int J Geriatr Psychiatry. 2021; 1-13. https://doi.org/10.1002/gps.5667
dc.identifier.doi10.1002/gps.5667
dc.identifier.essn1099-1166
dc.identifier.issn0885-6230
dc.identifier.officialurlhttps://doi.org/10.1002/gps.5667
dc.identifier.urihttps://hdl.handle.net/20.500.14352/99890
dc.issue.number2
dc.journal.titleInternational Journal of Geriatric Psychiatry
dc.language.isoeng
dc.publisherWiley
dc.relation.projectIDinfo:eu-repo/grantAgreement/INT20/00079
dc.relation.projectIDinfo:eu-repo/grantAgreement/FI20/000145
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN/PID2019‐110866RB‐I00
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO/TIN2017‐85727‐C4‐{2,4}‐P
dc.relation.projectIDinfo:eu-repo/grantAgreement/IB16035
dc.relation.projectIDinfo:eu-repo/grantAgreement/GR15068
dc.rights.accessRightsrestricted access
dc.subject.cdu616.894-053.9
dc.subject.keywordAlzheimer's disease
dc.subject.keywordArtificial intelligence
dc.subject.keywordComputer‐aideddiagnosis
dc.subject.keywordFrontotemporal dementia
dc.subject.keywordMachine learning
dc.subject.keywordNeurodegenerative diseases
dc.subject.ucmCiencias Biomédicas
dc.subject.unesco32 Ciencias Médicas
dc.titleDiagnosis of Alzheimer's disease and behavioural variant frontotemporal dementia with machine learning‐aided neuropsychological assessment using feature engineering and genetic algorithms
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number37
dspace.entity.typePublication
relation.isAuthorOfPublicationd4ae3c31-bf3c-426c-8540-66134aad8381
relation.isAuthorOfPublicationc86a8fee-473f-4ab8-9992-7f313064a008
relation.isAuthorOfPublicationd2238230-9cee-487f-b3cd-be34f115629c
relation.isAuthorOfPublicationd73a810d-34c3-440e-8b5f-e2a7b0eb538f
relation.isAuthorOfPublication.latestForDiscoveryd4ae3c31-bf3c-426c-8540-66134aad8381

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Diagnosis_of_Alzheimer's_disease.pdf
Size:
1.7 MB
Format:
Adobe Portable Document Format

Collections