Accounting for dependent informative sampling in model-based finite population inference

dc.contributor.authorMolina Peralta, Isabel
dc.contributor.authorGhosh, Malay
dc.date.accessioned2025-10-22T15:47:35Z
dc.date.available2025-10-22T15:47:35Z
dc.date.issued2020
dc.description.abstractThe paper considers model-based inference for finite population parameters under informative sampling, when the draws of the different units are not independent and the joint selection probability is modeled using a copula. We extend the “sample likelihood” approach to the case of dependent draws and provide the expression of the likelihood given the selected sample, called here “selection likelihood”. We show how to derive maximum likelihood estimators of the model parameters based on the resulting selection likelihood. Further, we find optimal predictors of individual values and of finite population parameters under the proposed informative selection models. In an experiment based on the 1988 U.S. National Maternal and Infant Health Survey, results indicate that, for small sample size, the proposed selection likelihood method reduces systematically the bias and standard errors of the estimators obtained from the sample likelihood based on independent draws and become the same for large sample size. It reduces considerably the bias due to informativeness and gives more efficient estimators than the pseudo likelihood (or quasi-likelihood) approach based on weighting the sample estimating equations by the survey weights.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad
dc.description.sponsorshipNational Science Foundation
dc.description.statuspub
dc.identifier.doi10.1007/s11749-020-00708-0
dc.identifier.issn1133-0686
dc.identifier.issn1863-8260
dc.identifier.officialurlhttps://doi.org/10.1007/s11749-020-00708-0
dc.identifier.urihttps://hdl.handle.net/20.500.14352/125271
dc.issue.number1
dc.journal.titleTEST
dc.language.isoeng
dc.page.final197
dc.page.initial179
dc.publisherSpringer
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//MTM2012-37077-C02-01/ES/ESTIMACION EN AREAS PEQUEÑAS - PROCEDIMIENTOS BASADOS EN MODELOS/
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//MTM2015-69638-R/ES/CARTOGRAFIA DE LA POBREZA CON ALTA PRECISION/
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//MTM2015-64842-P/ES/PROCEDIMIENTOS BASADOS EN MODELOS PARA ESTIMACION EN AREAS PEQUEÑAS/
dc.relation.projectIDSES-1327359
dc.rights.accessRightsrestricted access
dc.subject.keywordCopulas
dc.subject.keywordEM method
dc.subject.keywordMaximum likelihood
dc.subject.keywordSample likelihood
dc.subject.keywordSample selection bias
dc.subject.ucmEstadística
dc.subject.unesco1209 Estadística
dc.titleAccounting for dependent informative sampling in model-based finite population inference
dc.typejournal article
dc.volume.number30
dspace.entity.typePublication
relation.isAuthorOfPublicationa3c33f79-7b2c-4b7b-9def-392b85b056a2
relation.isAuthorOfPublication.latestForDiscoverya3c33f79-7b2c-4b7b-9def-392b85b056a2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
informative-sampling_model-based-inference.pdf
Size:
338.46 KB
Format:
Adobe Portable Document Format

Collections