Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Algebras with actions and automata

dc.contributor.authorKühnel, Wolfgang
dc.contributor.authorPfender, Michael
dc.contributor.authorMeseguer Guaita, José
dc.contributor.authorSols Lucía, Ignacio
dc.date.accessioned2023-06-21T02:05:35Z
dc.date.available2023-06-21T02:05:35Z
dc.date.issued1982
dc.description.abstractIn the present paper we want to give a common structure theory of left action, group operations, R-modules and automata of different types defined over various kinds of carrier objects: sets, graphs, presheaves, sheaves, topological spaces (in particular: compactly generated Hausdorff spaces). The first section gives an axiomatic approach to algebraic structures relative to a base category B, slightly more powerful than that of monadic (tripleable) functors. In section 2 we generalize Lawveres functorial semantics to many-sorted algebras over cartesian closed categories. In section 3 we treat the structures mentioned in the beginning as many-sorted algebras with fixed “scalar” or “input” object and show that they still have an algebraic (or monadic) forgetful functor (theorem 3.3) and hence the general theory of algebraic structures applies. These structures were usually treated as one-sorted in the Lawvere-setting, the action being expressed by a family of unary operations indexed over the scalars. But this approach cannot, as the one developed here, describe continuity of the action (more general: the action to be a B-morphism), which is essential for the structures mentioned above, e.g. modules for a sheaf of rings or topological automata. Finally we discuss consequences of theorem 3.3 for the structure theory of various types of automata. The particular case of algebras with fixed “natural numbers object” has been studied by the authors in [23].
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21494
dc.identifier.doi10.1155/S0161171282000076
dc.identifier.issn0161-1712
dc.identifier.officialurlhttp://www.hindawi.com/journals/ijmms/1982/152124/abs/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64830
dc.issue.number1
dc.journal.titleInternational Journal of Mathematics and Mathematical Sciences
dc.language.isoeng
dc.page.final85
dc.page.initial61
dc.publisherHindawi Publishing Corporation
dc.rights.accessRightsopen access
dc.subject.cdu517
dc.subject.keywordAlgebras
dc.subject.keywordactions
dc.subject.keywordautomata
dc.subject.keywordalgebraic functor.
dc.subject.ucmAnálisis matemático
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleAlgebras with actions and automata
dc.typejournal article
dc.volume.number5
dcterms.referencesSEMINAR on Triples and Categorical Homology Theory, Berlin- Heidelberg-New York 1969 (L.N. in Math. 80). MacLANE, S. Categories for the Working Mathematician, New York-Heidelberg-Berlin 1972. PAREIGIS, B. Categories and Functors, New York-London 1970. PFENDER,M.Kongruenzen,Konstruktion von Limiten und Cokernen und algebraische Kategorien, Dissertation TU Berlin 1971. MAHR, B. Erzeugung von Kongruenzen, Diplom Arbeit TU Berlin 1974. HANSEN, H. Kategorielle Betrachtungen zu den Stzen von Jordan-Hider und Schreier, Diplom Arbeit TU Berlin 1974. EHRIG, H./ PFENDER, M. u.a. Kategorien und-Automaten, Berlin- New York 1972. LINTON,F.E.J.Coequalizers in Categories of Algebras,in 1, 75-90. DUBUC, E. J. Adjoint Triangles, in: Reports of the Midwest Category Seminar II, Berlin - Heidelberg- New York 1968, 69-91 (L.N. in Math.61). HERRLICH,H.Topologische Reflexionen und Coreflexionen, Berlin - Heidelberg-New York 1968 (L.N. in Math. 78). LAWVERE,F.W.Functorial Semantics of Algebraic Theories,Ph.D.-Thesis, Columbia-University 1973, summarized in: Proc. Nat. Acad. Sci. USA 50 (1963), 869-873. HIGGINS,P.J.Algebras with a Scheme of Operators,Math.Nachr. 27 (1963), 115-132. BIRKHOFF,G./LIPSON,J.D.Heterogeneous Algebras,J.Comb.Theory 8 (1970), I15-133. SCHULTE - MONTING, J.Kategorien yon Algebren mit einer Familie von Grundobjekten, Diplom Arbeit Universitt Freiburg/Br.1968. PFENDER, M. Universal Algebra in S-laonoidal Categories, Algebra - Berichte Math. Inst., Univ. IUnchen 20 (1974). PFENDER, M. Universelle Algebren in monoidalen Kategorien, Manuskript TU Berlin 1972. EHRIG,H./KIERMEIER,K.-D./KREOWSKI,H.-J./KUHNEL, W.Universal Theory of Automata, Stuttgart 1974. STEENROD,N.E.A Convenient Category of Topological Spaces, Mich. Math. J. 14 (1967), 33-52. WISCHNEWSKY, M. Partielle Algebren in Initialkategorien, Math. Z. 127 (1972), 83-91. WYLER,O.Categories of General Topology, Arch Math. 22(1971). EHRIG,H./KUHNEL,W.Topological Automata, Revue Franc.d’ Automatique, Informatique et Recherche Op&rationnelle 8 R-3 (1974), 73-91. BENSON, D. B. An Abstract Machine Theory for Formal Language Parsers, in: Category Theory Applied to Computation and Control, Proceedings of the First International Symposium San Francisco 1974,106-111, Berlin Heidelberg-New York 1975 (Lectures Notes in Computer Science 25) KHNEL,W./MESEGUER,J./PFENDER,M./SOLS, I. Primitive Recursive Algebraic Theories and Program Schemes, Bull. Austr. Math. Soc. 17 (1977), 207 233 FREYD,P.Aspects of Topoi, Bull. Austr. Math. Soc.7(1972), 76
dspace.entity.typePublication
relation.isAuthorOfPublication6d35def4-3d5f-4978-800f-82b7edf76b5d
relation.isAuthorOfPublication.latestForDiscovery6d35def4-3d5f-4978-800f-82b7edf76b5d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sols31.pdf
Size:
1.67 MB
Format:
Adobe Portable Document Format

Collections