Shape index in metric spaces

dc.contributor.authorRomero Ruiz del Portal, Francisco
dc.contributor.authorSalazar, J. M.
dc.date.accessioned2023-06-20T17:10:42Z
dc.date.available2023-06-20T17:10:42Z
dc.date.issued2003
dc.description.abstractWe extend the shape index, introduced by Robbin and Salamon and Mrozek, to locally defined maps in metric spaces. We show that this index is additive. Thus our construction answers in the affirmative two questions posed by Mrozek in [12]. We also prove that the shape index cannot be arbitrarily complicated: the shapes of q -adic solenoids appear as shape indices in natural modifications of Smale's horseshoes but there is not any compact isolated invariant set for any locally defined map in a locally compact metric ANR whose shape index is the shape of a generalized solenoid. We also show that, for maps defined in locally compact metric ANRs, the shape index can always be computed in the Hilbert cube. Consequently, the shape index is the shape of the inverse limit of a sequence {P n ,g n } where P n =P is a fixed ANR and g n =g:P→P is a fixed bonding map.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/19892
dc.identifier.doi10.4064/fm176-1-4
dc.identifier.issn0016-2736
dc.identifier.officialurlhttp://journals.impan.gov.pl/fm/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57897
dc.issue.number1
dc.journal.titleFundamenta Mathematicae
dc.page.final62
dc.page.initial47
dc.publisherPolish acad sciences inst mathematics
dc.rights.accessRightsmetadata only access
dc.subject.cdu515.1
dc.subject.keywordSemidynamical systems
dc.subject.keywordConley index
dc.subject.keywordShape theory
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleShape index in metric spaces
dc.typejournal article
dc.volume.number176
dspace.entity.typePublication

Download

Collections