Bonding configuration and density of defects of SiOxHy thin films deposited by the electron cyclotron resonance plasma method

dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorGonzález Díaz, Germán
dc.contributor.authorPrado Millán, Álvaro Del
dc.contributor.authorSan Andrés Serrano, Enrique
dc.date.accessioned2023-06-20T10:44:39Z
dc.date.available2023-06-20T10:44:39Z
dc.date.issued2003-12-15
dc.description© 2003 American Institute of Physics. The authors acknowledge C.A.I. de Implantación Iónica (U.C.M.) for technical support, and especially to Rosa Cimas Cuevas for aid in sample processing, and C.A.I. de Espectroscopia (U.C.M.) for providing access to the FTIR spectrometer. This work was partially supported by the Spanish CICYT, under Contract No. TIC 01-1253.
dc.description.abstractThe composition, bonding configuration, hydrogen content, and paramagnetic defects of SiOxHy thin films were studied. Films were deposited by the electron cyclotron resonance plasma method at room temperature using SiH4 and O-2 as precursor gases. The film composition was measured by heavy ion elastic recoil detection analysis and energy dispersive x-ray spectroscopy. Suboxide films with compositions ranging from SiO2 to SiH0.38 were obtained. Infrared spectroscopy showed the presence of different Si-O and Si-H vibration modes. The usual estimation of the oxygen to silicon ratio by the wave number of the Si-O-Si stretching band was not accurate for films far from stoichiometry. These off-stoichiometric films also showed a broader Si-O-Si stretching peak than the stoichiometric ones, indicating a higher bonding disorder. The position of the Si-O-Si bending and rocking modes did not depend on the film composition. On the other hand, the peak position of the Si-H modes were found strongly dependent on the Si environment. By single-wavelength ellipsometry at lambda=632.8 nm the refractive index n was found to range between 1.45 (SiO2) and 2.04 (SiO0.06H0.36). Electron spin resonance measurements showed that stoichiometric films presented the well known E' center (.Siequivalent toO(3)) with concentrations in the 10(16)-10(17) cm(-3) range, while for Si-rich films (x<1) the Si dangling bond center (Si-DB, .Siequivalent toSi(3)) was the only detectable defect, with concentrations in the 10(18)-10(19) cm(-3) range. In near-stoichiometric films both E-' and Si-DB centers were found.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish CICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26102
dc.identifier.doi10.1063/1.1626798
dc.identifier.issn0021-8979
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.1626798
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51127
dc.issue.number12
dc.journal.titleJournal of Applied Physics
dc.language.isoeng
dc.page.final7469
dc.page.initial7462
dc.publisherAmerican Institute of Physics
dc.relation.projectIDTIC 01-1253
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordChemical-Vapor-Deposition
dc.subject.keywordSilicon-Rich Oxide
dc.subject.keywordH FIlms
dc.subject.keywordOptical-Properties
dc.subject.keywordSi/SiO2 Interface
dc.subject.keywordSpin-Resonance
dc.subject.keywordOxygen
dc.subject.keywordSiO2
dc.subject.keywordNanocrystals
dc.subject.keywordSystem.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleBonding configuration and density of defects of SiOxHy thin films deposited by the electron cyclotron resonance plasma method
dc.typejournal article
dc.volume.number94
dcterms.references1) G. Lucovsky, J. Non-Cryst. Solids, 227-230, 1 (1998). 2) K. T. Queeney, M. K. Weldon, J. P. Chang, Y. J. Chabal, A. B. Gurevich, J. Sapjeta, and R. L. Opila, J. Appl. Phys., 87, 1322 (2000). 3) G. B. Alers, D. J. Werder, Y. Chabal, H. C. Lu, E. P. Gusev, E. Garfunkel, T. Gustafsson, and R. S. Urdahl, Appl. Phys. Lett., 73, 1517 (1998). 4) F. Irrera and F. Russo, IEEE Trans. Electron Devices, ED-46, 2315 (1999). 5) I. Crupi, S. Lombardo, C. Spinella, C. Bongiormo, Y. Liao, C. Gerardi, B. Fazio, M. Vulpio, and S. Privitera, J. Appl. Phys., 89, 5552 (2001). 6) D. N. Kouvatsos, V. Ioannou-Sougleridis, and A. G. Nassiopoulou, Appl. Phys. Lett., 82, 397 (2003). 7) U. Kahler and H. Hofmeister, Appl. Phys. A: Mater. Sci. Process., 74, 13 (2002). 8) D. Nesheva, C. Raptis, A. Perakis, I. Bineva, Z. Aneva, Z. Levi, S. Alexandrova and H. Hofmeister, J. Appl. Phys., 82, 4678 (2002). 9) G. Franzò, A. Irrera, E. C. Moreira, M. Miritello, F. Iacoma, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, Appl. Phys. A: Mater. Sci. Process., 74, 1 (2002). 10) M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, J. Appl. Phys., 90, 2057 (2001). 11) S. M. Sze, Physics of Semiconductor Devices, (Wiley, New York, 1981). 12) C. Lin, W. Tseng, M. S. Feng, and B. Lee, J. Appl. Phys., 87, 2808 (2000). 13) D. V. Tsu, G. Lucovsky, and B. N. Davidson, Phys. Rev. B, 40, 1795 (1989). 14) M. Zacharias, D. Dimova-Malinovska, and M. Stutzmann, Philos. Mag. B, 73, 799 (1996). 15) P. M. Lenahan and J. F. Conley, Jr., J. Vac. Sci. Technol. B, 16, 2134 (1998). 16) T. Inokuma, L. He, Y. Kurata, and S. Hasegawa, J. Electrochem. Soc., 142, 2346 (1995). 17) E. Holzenkampfer, F.-W. Richter, J. Stuke, and U. Voget-Grote, J. Non-Cryst. Solids, 32, 327 (1979). 18) P. V. Bulkin, P. L. Swart, and B. M. Lacquet, J. Non-Cryst. Solids, 226, 58 (1998). 19) K. Yoshida, I. Umezu, N. Sakamoto, M. Inada, and A. Sugimura, J. Appl. Phys., 92, 5936 (2002). 20) D. Nesheva, I. Bineva, Z. Levi, Z. Aneva, T. Merdzhanova, and J. C. Pivin, Vacuum, 68, 1 (2003). 21) K. Miyake, S. Kimura, T. Warabisako, H. Sunami, and T. Tokuyama, J. Vac. Sci. Technol. A, 2, 496 (1984). 22) B. H. Lee, Y. Jeon, K. Zawadzki, W.-J. Qi, and J. Lee, Appl. Phys. Lett., 74, 3143 (1999). 23) T. P. Ma, IEEE Trans. Electron Devices, ED-45, 680 (1998). 24) M. Losurdo, P. Capezzuto, G. Bruno, G. Perna, and V. Capozzi, Appl. Phys. Lett., 81, 16 (2002). 25) P. K. Shufflebotham, D. J. Thomson, and H. C. Card, J. Appl. Phys., 64, 4398 (1988). 26) F. L. Martínez, E. San Andrés, Á. del Prado, I. Mártil, D. Bravo, and F. J. López, J. Appl. Phys., 90, 1573 (2001). 27) F. L. Martínez, Á. Del Prado, I. Mártil, G. González-Díaz, W. Bohne, W. Fuhs, J. Rörich, B. Selle, and I. Sieber, Phys. Rev. B, 63, 245320 (2001). 28) W. Bohne, J. Röhrich, and G. Röschert, Nucl. Instrum. Methods Phys. Res. B, 136-138, 633 (1998). 29) W. Bohne, S. Hessler, and G. Röschert, Nucl. Instrum. Methods Phys. Res. B, 113, 78 (1996). 30) W. Bohne, W. Fuhs, J. Röhrich, B. Selle, I. Sieber, Á. del Prado, E. San Andrés, I. Mártil, and G. González-Díaz, Surf. Interface Anal., 34, 749 (2002). 31) G. F. Bastin and H. J. M. Heijligers, Scanning, 12, 225 (1990). 32) B. J. Hinds, F. Wang, D. M. Wolfe, C. L. Hinkle, and G. Lucovsky, J. Vac. Sci. Technol. B, 16, 2171 (1998). 33) E. San Andrés, Á. del Prado, I. Mártil, G. González-Díaz, D. Bravo, and F. J. López, J. Appl. Phys., 92, 1906 (2002). 34) F. Rochet, G. Dufour, H. Roulet, B. Pelloie, J. Perrière, E. Fogarassy, A. Slaoui, and M. Froment, Phys. Rev. B, 37, 6468 (1988). 35) A. Sasella, A. Borghesi, F. Corni, A. Monelli, G. Ottaviani, R. Tonini, B. Pivac, M. Bachetta, and L. Zanotti, J. Vac. Sci. Technol. A, 15, 377 (1997). 36) D. Landheer, Y. Tao, J. E. Hulse, T. Quance, and D.-X. Xu, J. Electrochem. Soc., 143, 1681 (1996). 37) E. San Andrés, Á. del Prado, F. L. Martínez, I. Mártil, D. Bravo, and F. J. López, J. Appl. Phys., 87, 1187 (2000). 38) K. Furukawa, Y. Liu, H. Nakashima, D. Gao, K. Uchino, K. Muraoka, and H. Tsuzuki, Appl. Phys. Lett., 72, 725 (1998). 39) L. He, Y. Kurata, T. Inokuma, and S. Hasegawa, Appl. Phys. Lett., 63, 162 (1993). 40) G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler, and W. Czubatyj, Phys. Rev. B, 28, 3225 (1983). 41) G. Lucovsky and W. B. Pollard, J. Vac. Sci. Technol. A, 1, 313 (1983). 42) Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic, Orlando, FL, 1985). 43) M. J. Uren, J. H. Stathis, and E. Cartier, J. Appl. Phys., 80, 3915 (1996). 44) E. San Andrés, Á. del Prado, I. Mártil, G. González-Díaz, F. L. Martínez, D. Bravo, and F. J. López, Vacuum, 67, 531 (2002). 45) L. He, T. Inokuma, and S. Hasegawa, Jpn. J. Appl. Phys., Part 1, 35, 1503 (1996). 46) H. Angermann, W. Henrion, and A. Ro¨seler, Silicon-Based Materials and Devices, Vol. 1: Materials and Processing (Academic, New York, 2001), Chap. 7, p. 267. 47) H. R. Philipp, J. Phys. Chem. Solids, 32, 1935 (1971).
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication7a3a1475-b9cc-4071-a7d3-fbf68fe1dce0
relation.isAuthorOfPublication21e27519-52b3-488f-9a2a-b4851af89a71
relation.isAuthorOfPublication.latestForDiscoverya5ab602d-705f-4080-b4eb-53772168a203

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martil,48libre.pdf
Size:
267.12 KB
Format:
Adobe Portable Document Format

Collections