Gauge-invariant variationally trivial problems on T∗M
dc.contributor.author | Castrillón López, Marco | |
dc.contributor.author | Muñoz Masqué, Jaime | |
dc.date.accessioned | 2023-06-20T18:54:44Z | |
dc.date.available | 2023-06-20T18:54:44Z | |
dc.date.issued | 1999 | |
dc.description.abstract | The paper presents some basic facts concerning the formulation of the gauge invariance property of the electromagnetic field in terms of differentiable manifolds. For example, the gauge potentials are identified as differential one-forms on the manifold. The Lagrangian densities invariant under the algebra of the infinitesimal gauge transformations are also disscussed. From the set of these Lagrangians, the class of variationally trivial Lagrangians is interpreted in terms of multivector fields on the ground manifold. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DLES | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/24325 | |
dc.identifier.doi | 10.1063/1.532687 | |
dc.identifier.issn | 0022-2488 | |
dc.identifier.officialurl | http://scitation.aip.org/content/aip/journal/jmp/40/2/10.1063/1.532687 | |
dc.identifier.relatedurl | http://jmp.aip.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/58912 | |
dc.issue.number | 2 | |
dc.journal.title | Journal of Mathematical Physics | |
dc.language.iso | eng | |
dc.page.final | 829 | |
dc.page.initial | 821 | |
dc.publisher | American Institute of Physics | |
dc.relation.projectID | PB 95-0124 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 514.142 | |
dc.subject.cdu | 517.95 | |
dc.subject.keyword | Lagrangian mechanics | |
dc.subject.keyword | Lie algebras. | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Gauge-invariant variationally trivial problems on T∗M | |
dc.type | journal article | |
dc.volume.number | 40 | |
dcterms.references | D. Bleecker, Gauge Theory and Variational Principles (Addison–Wesley, Reading, MA, 1981). L. Hernández Encinas and J. Muñoz Masqué, “Symplectic structure and gauge invariance on the cotangent bundle,” J. Math. Phys. 35, 426–434 (1994). K. B. Marathe and G. Martucci, “The geometry of gauge fields” J. Geom. Phys. 6, 1–106 (1989). R. Utiyama, “Invariant theoretical interpretation of interaction” Phys. Rev. 101, 1597–1607 (1956). S. Kobayashi and K. Nomizu, Foundations of Differential Geometry (Wiley Interscience, New York, 1963), Vol. I, Vol. II (1969). J. V. Beltrán and J. Monterde, “Graded Poisson structures on the algebra of differential forms,” Comment. Math. Helvetici 70, 383–402 (1995). A. Cabras and A. M. Vinogradov, “Extensions of the Poisson bracket to differential forms and multivector fields,” J. Geom. Phys. 9, 75–100 (1992). J. L. Dupont, Curvature and Characteristic Classes [Lect. Notes Math 640 (1978)]. P. B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah–Singer Index Theorem (CRC, Boca Raton, FL, 1994). D. J. Eck, “Gauge-natural bundles and generalized gauge theories,” Mem. Am. Math. Soc. 247 (1981). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 32e59067-ef83-4ca6-8435-cd0721eb706b | |
relation.isAuthorOfPublication.latestForDiscovery | 32e59067-ef83-4ca6-8435-cd0721eb706b |
Download
Original bundle
1 - 1 of 1