Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Gauge-invariant variationally trivial problems on T∗M

dc.contributor.authorCastrillón López, Marco
dc.contributor.authorMuñoz Masqué, Jaime
dc.date.accessioned2023-06-20T18:54:44Z
dc.date.available2023-06-20T18:54:44Z
dc.date.issued1999
dc.description.abstractThe paper presents some basic facts concerning the formulation of the gauge invariance property of the electromagnetic field in terms of differentiable manifolds. For example, the gauge potentials are identified as differential one-forms on the manifold. The Lagrangian densities invariant under the algebra of the infinitesimal gauge transformations are also disscussed. From the set of these Lagrangians, the class of variationally trivial Lagrangians is interpreted in terms of multivector fields on the ground manifold.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDLES
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/24325
dc.identifier.doi10.1063/1.532687
dc.identifier.issn0022-2488
dc.identifier.officialurlhttp://scitation.aip.org/content/aip/journal/jmp/40/2/10.1063/1.532687
dc.identifier.relatedurlhttp://jmp.aip.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58912
dc.issue.number2
dc.journal.titleJournal of Mathematical Physics
dc.language.isoeng
dc.page.final829
dc.page.initial821
dc.publisherAmerican Institute of Physics
dc.relation.projectIDPB 95-0124
dc.rights.accessRightsrestricted access
dc.subject.cdu514.142
dc.subject.cdu517.95
dc.subject.keywordLagrangian mechanics
dc.subject.keywordLie algebras.
dc.subject.ucmGeometria algebraica
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1201.01 Geometría Algebraica
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleGauge-invariant variationally trivial problems on T∗M
dc.typejournal article
dc.volume.number40
dcterms.referencesD. Bleecker, Gauge Theory and Variational Principles (Addison–Wesley, Reading, MA, 1981). L. Hernández Encinas and J. Muñoz Masqué, “Symplectic structure and gauge invariance on the cotangent bundle,” J. Math. Phys. 35, 426–434 (1994). K. B. Marathe and G. Martucci, “The geometry of gauge fields” J. Geom. Phys. 6, 1–106 (1989). R. Utiyama, “Invariant theoretical interpretation of interaction” Phys. Rev. 101, 1597–1607 (1956). S. Kobayashi and K. Nomizu, Foundations of Differential Geometry (Wiley Interscience, New York, 1963), Vol. I, Vol. II (1969). J. V. Beltrán and J. Monterde, “Graded Poisson structures on the algebra of differential forms,” Comment. Math. Helvetici 70, 383–402 (1995). A. Cabras and A. M. Vinogradov, “Extensions of the Poisson bracket to differential forms and multivector fields,” J. Geom. Phys. 9, 75–100 (1992). J. L. Dupont, Curvature and Characteristic Classes [Lect. Notes Math 640 (1978)]. P. B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah–Singer Index Theorem (CRC, Boca Raton, FL, 1994). D. J. Eck, “Gauge-natural bundles and generalized gauge theories,” Mem. Am. Math. Soc. 247 (1981).
dspace.entity.typePublication
relation.isAuthorOfPublication32e59067-ef83-4ca6-8435-cd0721eb706b
relation.isAuthorOfPublication.latestForDiscovery32e59067-ef83-4ca6-8435-cd0721eb706b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
castrillón260.pdf
Size:
346.74 KB
Format:
Adobe Portable Document Format

Collections