Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Trace identities in the inverse scattering transform method associated with matrix Schrödinger operators

dc.contributor.authorMartínez Alonso, Luis
dc.contributor.authorOlmedilla Moreno, Eugenio
dc.date.accessioned2023-06-21T02:09:15Z
dc.date.available2023-06-21T02:09:15Z
dc.date.issued1982
dc.description©1982 American Institute of Physics.
dc.description.abstractTrace identities arising in the scattering theory of one-dimensional matrix Schrodinger operators are deduced. They derive from the properties of an asymptotic expansion of the trace of the resolvent kernel in inverse powers of the spectral parameter. Applications of these trace identities for characterizing infinite families of conservation laws for nonlinear evolution equations are given.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/33074
dc.identifier.doi10.1063/1.525265
dc.identifier.issn0022-2488
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.525265
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64992
dc.issue.number11
dc.journal.titleJournal of mathematical physics
dc.language.isoeng
dc.page.final2121
dc.page.initial2116
dc.publisherAmerican Institute of Physics
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordPhysics
dc.subject.keywordMathematical
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleTrace identities in the inverse scattering transform method associated with matrix Schrödinger operators
dc.typejournal article
dc.volume.number23
dcterms.references1.L. D. Faddeev and V. E. Zakharov, Funkcional Anal. Prilozen. 5, 18 (1971). 2.V. E. Zakharov and S. V. Manakov, Theor. Math. Phys. 19, 332 (1974). 3.L. D. Faddeev and L. A. Takhtajan, Theor. Math. Phys. 21, 160 (1974). 4.L. D. Faddeev and V. E. Korepin, Phys. Rep. 42,1 (1978). 5.L. D. Faddeev, "A Hamiltonian Interpretation of the Inverse Scattering Method" in Solitons, edited by R. K. Bullough and P. J. Caudrey (Springer, Berlin, 1980). 6. See the references quoted in the article by M. Fowler, "The Quantum Inverse Scattering Method and Applications to Spin Chains" in Physics in One Dimension, edited by J. Bernasconi and T. Schneider, Springer Series in Solid-State Sciences, Vol. 23 (Springer, Berlin, 1981). 7.M. Wadati and T. Kamijo, Prog. Theor. Phys. 52, 397 (1974). 8.F. Calogero and A. Degasperis, Nuovo Cimento B 39, 1 (1977). 9.I. M. Gel'fand and L. A. Diki, Usp. Math. Nauk 30, 67 (1975); Funkcional Anal. Prilozen. 10,18 (1976); Funkcional Anal. Prilozen. 10,13 (1976); Funkcional Anal. Prilozen. II, 11 (1977); Funkcional Anal. Prilozen. 12, 8 (1978). 10.L. D. Faddeev, Trudy Mat. Inst. Steklov 73,314 (1964). 11.P. Deift and E. Trubowitz, Comm. Pure Appl. Math. 32, 121 (1979). 12.ǀThis condition is more suitable than the usual one, (1 + ǀxǀ) ǀV ǀε L '(R), in order to characterize the behavior of the scattering coefficients at k = O. See Ref. 11. 13.The bounds for F + and F + (respectively, F _ and F _) are uniform with respect to x in the intervals (-ß ∞, 00) [respectively, ( - ∞, ß)], where α, ß are arbitrary finite numbers. 14.0. Ragnisco, Lett. Nuovo Cimento 31,651 (1981). 15.E. Olmedilla, L. Martinez Alonso, and F. Guil, Nuovo Cimento B 61, 49 (1981). 16.See the proof of Lemma 6 of Ref. 11. Similar arguments lead to (3.8a) and (3.8b). I7.E. F. Beckenbach, Bull. Amer. Math. Soc. 49, 615 (1943). 18.See part V of Theorem 1 of Ref. 11. The statement remains true for the matrix case. 19.See Part IV of Theorem 1 of Ref. 11. 20.A. Degasperis, "Spectral Transform and Solvability of Nonlinear Evolution Equations" in Nonlinear Problems in Theoretical Physics, edited by A. F. Raiiada, Lecture Notes in Physics, Vol. 98 (Springer, Berlin, 1979). 21 A. C. Newell, "The Inverse Scattering Method" in Solitons, edited by R. K. Bullough and P. J. Caudrey (Springer, Berlin, 1980). 22M. Wadati, "Generalized Matrix Form of the Inverse Scattering Meth• od" in Solitons, edited by R. K. Bullough and P. J. Caudrey (Springer, Berlin, 1980).
dspace.entity.typePublication
relation.isAuthorOfPublication896aafc0-9740-4609-bc38-829f249a0d2b
relation.isAuthorOfPublicationc92f38f0-bc01-4d8e-8079-b273f94ac59f
relation.isAuthorOfPublication.latestForDiscovery896aafc0-9740-4609-bc38-829f249a0d2b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
olmedilla07libre.pdf
Size:
479.49 KB
Format:
Adobe Portable Document Format

Collections