Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Using genetic algorithms to generate test sequences for complex timed systems

dc.contributor.authorNúñez, Alberto
dc.contributor.authorGarcía Merayo, María De Las Mercedes
dc.contributor.authorHierons, Robert M.
dc.contributor.authorNúñez García, Manuel
dc.date.accessioned2023-06-19T13:21:26Z
dc.date.available2023-06-19T13:21:26Z
dc.date.issued2013-02
dc.description.abstractThe generation of test data for state-based specifications is a computationally expensive process. This problem is magnified if we consider that time constraints have to be taken into account to govern the transitions of the studied system. The main goal of this paper is to introduce a complete methodology, supported by tools, that addresses this issue by representing the test data generation problem as an optimization problem. We use heuristics to generate test cases. In order to assess the suitability of our approach we consider two different case studies: a communication protocol and the scientific application BIPS3D. We give details concerning how the test case generation problem can be presented as a search problem and automated. Genetic algorithms (GAs) and random search are used to generate test data and evaluate the approach. GAs outperform random search and seem to scale well as the problem size increases. It is worth to mention that we use a very simple fitness function that can be easily adapted to be used with other evolutionary search techniques.
dc.description.departmentSección Deptal. de Sistemas Informáticos y Computación
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish MEC project TESIS
dc.description.sponsorshipUK EPSRC project Testing of Probabilistic and Stochastic Systems
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20336
dc.identifier.doi10.1007/s00500-012-0894-5
dc.identifier.issn1432-7643
dc.identifier.officialurlhttp://link.springer.com/content/pdf/10.1007%2Fs00500-012-0894-5
dc.identifier.relatedurlhttp://www.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33272
dc.issue.number2
dc.journal.titleSoft Computing
dc.language.isoeng
dc.page.final315
dc.page.initial301
dc.publisherSpringer-Verlag
dc.relation.projectIDTIN2009-14312-C02-01
dc.relation.projectIDEP/G032572/1
dc.rights.accessRightsrestricted access
dc.subject.cdu004.8
dc.subject.keywordFormal testing
dc.subject.keywordGenetic algorithms
dc.subject.keywordTimed systems
dc.subject.keywordfinite-state machines
dc.subject.keywordsoftware test data
dc.subject.keywordchecking sequences
dc.subject.keywordefsm models
dc.subject.keywordidentification
dc.subject.keywordlength
dc.subject.ucmInformática (Informática)
dc.subject.unesco1203.17 Informática
dc.titleUsing genetic algorithms to generate test sequences for complex timed systems
dc.typejournal article
dc.volume.number17
dspace.entity.typePublication
relation.isAuthorOfPublication28ca46b8-d1eb-42e6-a6e2-f31b193b055b
relation.isAuthorOfPublication26825d32-1d0a-4bbb-b145-e014e22f1a88
relation.isAuthorOfPublication.latestForDiscovery26825d32-1d0a-4bbb-b145-e014e22f1a88

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
GMerayo100.pdf
Size:
608.47 KB
Format:
Adobe Portable Document Format

Collections