Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Recommender systems for smart cities

dc.contributor.authorQuijano-Sánchez, Lara
dc.contributor.authorCantador, Iván
dc.contributor.authorCortés Cediel, María Elicia
dc.contributor.authorGil García, Olga
dc.date.accessioned2025-01-23T14:58:11Z
dc.date.available2025-01-23T14:58:11Z
dc.date.issued2020-09
dc.descriptionThis work was supported by the Spanish Ministries of Economy, Spain, Industry and Competitiveness, Spain (TIN2016-80630-P), and Science, Innovation and Universities, Spain (CAS18/00035).
dc.description.abstractAmong other conceptualizations, smart cities have been defined as functional urban areas articulated by the use of Information and Communication Technologies (ICT) and modern infrastructures to face city problems in efficient and sustainable ways. Within ICT, recommender systems are strong tools that filter relevant information, upgrading the relations between stakeholders in the polity and civil society, and assisting in decision making tasks through technological platforms. There are scientific articles covering recommendation approaches in smart city applications, and there are recommendation solutions implemented in real world smart city initiatives. However, to the best of our knowledge, there is not a comprehensive review of the state of the art on recommender systems for smart cities. For this reason, in this paper we present a taxonomy of smart city features, dimensions, actions and goals, and, according to these variables, we survey the existing literature on recommender systems. As a result of our survey, we do not only identify and analyze main research trends, but also show current opportunities and challenges where personalized recommendations could be exploited as solutions for citizens, firms and public administrations.
dc.description.departmentDepto. de Ciencia Política y de la Administración
dc.description.facultyFac. de Ciencias Políticas y Sociología
dc.description.facultyInstituto Complutense de Ciencia de la Administración (ICCA)
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades
dc.description.statuspub
dc.identifier.citationLara Quijano-Sánchez, Iván Cantador, María E. Cortés-Cediel, Olga Gil, Recommender systems for smart cities, Information Systems, Volume 92, 2020, 101545, ISSN 0306-4379, https://doi.org/10.1016/j.is.2020.101545.
dc.identifier.doi10.1016/j.is.2020.101545
dc.identifier.essn0306-4379
dc.identifier.officialurlhttps://doi.org/10.1016/j.is.2020.101545
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0306437920300478
dc.identifier.urihttps://hdl.handle.net/20.500.14352/115900
dc.issue.number101545
dc.journal.titleInformation Systems
dc.language.isoeng
dc.page.final22
dc.page.initial1
dc.publisherElsevier
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//2016-80630-P/ES/Efficient reputation analysis, propagation and recommendation in social network environments/
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICIU//CAS18/00035/ES/Programa: "José Castillejo" para estancias de movilidad en el extranjero de jóvenes doctores 2018/
dc.rights.accessRightsrestricted access
dc.subject.keywordRecommender systems
dc.subject.keywordSmart cities
dc.subject.keywordUrban computing
dc.subject.keywordSmart sensors
dc.subject.keywordInternet of things
dc.subject.keywordOpen data
dc.subject.ucmAdministración pública
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco5909.01 Gestión Administrativa
dc.titleRecommender systems for smart cities
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number92
dspace.entity.typePublication
relation.isAuthorOfPublicatione8bc585b-4fe3-490b-94e2-14d67c32e1dc
relation.isAuthorOfPublicatione28c182d-e9ee-4f03-af06-032161c7ba0c
relation.isAuthorOfPublication.latestForDiscoverye8bc585b-4fe3-490b-94e2-14d67c32e1dc

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Recommender_systems_for_smart_cities.pdf
Size:
398.41 KB
Format:
Adobe Portable Document Format

Collections