Elaboración de un proceso diagnóstico de glaucoma a través de fundoscopia y machine learning
Loading...
Download
Official URL
Full text at PDC
Publication date
2025
Defense date
25/04/2025
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Complutense de Madrid
Citation
Abstract
La tesis doctoral se centra en el diseño de un proceso diagnóstico para el glaucoma através de la fundoscopia y la aplicación de algoritmos de machine learning. Dada la altaincidencia de esta enfermedad, que constituye una de las principales causas deceguera irreversible, la investigación enfatiza la importancia de su detección temprana.El propósito es mejorar la precisión diagnóstica mediante el uso de inteligenciaartificial para analizar imágenes del fondo del ojo, reduciendo la variabilidad en lainterpretación clínica. El documento abarca una descripción exhaustiva de la anatomíade la retina y el nervio óptico, así como un repaso a las técnicas diagnósticas actuales.También se aborda cómo el aprendizaje automático y el aprendizaje profundo puedenaplicarse para identificar el glaucoma, explorando sus retos, aplicaciones y formas deintegración en la práctica clínica diaria.
The thesis focuses on developing a diagnostic process for glaucoma throughfundoscopy and the application of machine learning algorithms. Given the highprevalence of this disease, which is one of the leading causes of irreversible blindness,the research emphasizes the importance of early detection. The goal is to enhancediagnostic accuracy by employing artificial intelligence to analyze retinal images,thereby reducing variability in clinical interpretation. The document provides acomprehensive description of the anatomy of the retina and optic nerve, as well as areview of current diagnostic techniques. It also explores how machine learning anddeep learning can be applied to identify glaucoma, discussing its challenges,applications, and ways to integrate these approaches into daily clinical practice.
The thesis focuses on developing a diagnostic process for glaucoma throughfundoscopy and the application of machine learning algorithms. Given the highprevalence of this disease, which is one of the leading causes of irreversible blindness,the research emphasizes the importance of early detection. The goal is to enhancediagnostic accuracy by employing artificial intelligence to analyze retinal images,thereby reducing variability in clinical interpretation. The document provides acomprehensive description of the anatomy of the retina and optic nerve, as well as areview of current diagnostic techniques. It also explores how machine learning anddeep learning can be applied to identify glaucoma, discussing its challenges,applications, and ways to integrate these approaches into daily clinical practice.
Description
Tesis inédita de la Universidad Complutense de Madrid, Facultad de Medicina, leída el 25-04-2025













