Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Relativistic quantum mechanics of hydrogen atom as weak-field limit of a nonlinear theory

dc.contributor.authorFernández-Rañada, Antonio
dc.date.accessioned2023-06-21T02:07:27Z
dc.date.available2023-06-21T02:07:27Z
dc.date.issued1977-11-01
dc.description.abstractThe effect of nonlinear terms in the Dirac equation is investigated, in the case of the hydrogen atom. It is found that the change in the energy is of order α6 for a very large range of values of the coupling constant of the dominant term. It is shown that a nonlinear classical field theory has a quantumlike behavior near the linear limit. This implies the existence of a close relation between linearization and quantization. A classical stable model of the hydrogen atom is presented. Some consequences are discussed.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25358
dc.identifier.doi10.1007/BF01807613
dc.identifier.issn0020-7748
dc.identifier.officialurlhttp://dx.doi.org/10.1007/BF01807613
dc.identifier.relatedurlhttp://link.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64911
dc.issue.number11
dc.journal.titleInternational Journal of Theoretical Physics
dc.page.final812
dc.page.initial795
dc.publisherPlenum
dc.rights.accessRightsmetadata only access
dc.subject.cdu537
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleRelativistic quantum mechanics of hydrogen atom as weak-field limit of a nonlinear theory
dc.typejournal article
dc.volume.number16
dcterms.references1.- Abramowitz, A.I., and Stegun, I.A., (1972), Handbook of Mathematical Functions, Dover, New York. 2.- Akhiezer, A.I., and Berestetskii, V.B., (1965), Quantum electrodynamics, Wiley, New York. 3.- Anderson, D.L.T., (1971), Journal of Mathematical Physics 12, 945. 4.- Anderson, D.L.T., and Derrick, G.H. (1970).Journal of Mathematical Physics 11, 1336. 5.- Caudrey, P.J., Eilbeck, J.C., and Gibbon, J.D. (1975), Nuovo Cimento 25B, 407. 6.- Christ, N.H., and Lee, T.D., (1975), Physical Review D12, 1606. 7.- Coleman, S., (1975), Physical Review D11, 2088. 8.- Finkelstein, R., Lelevier, R., and Ruderman, H. (1951), Physical Review 83, 326. 9.- Finkelstein, R., Fronsdal, C., and Kaus, P. (1956), Physical Review 103, 1571. 10.- Gardner, C.S., Greene, J.M., Kruskal, M.D. and Miura, R.M., (1967), Physical Review Letters 19, 1095. 11.- Landau, L.D., and Lifshitz, E.M., (1958), Mechanics, Chap. 5, Pergamon Press, New York. 12.- Rañada, A.F., and Soler, M., (1972), Journal of Mathematical Physics 13, 673. 13.- Rañada, A.F., and Soler, M., (1973), Physical Review D 8, 3430. 14.- Rañada, A.F., and Vázquez, L., (1976), Progress of Theoretical Physics 56, 311. 15.- Rañada, A.F., Ranada, M.F., Soler, M., and Vázquez, L., (1974), Physical Review D 10, 517. 16.- Reiss, E.L., (1969), “Column Buckling” in Bifurcation Theory and Nonlinear Eigenvalue Problems, Keller, J.B., and Antman, S., eds. Benjamin, New York. 17.- Scott, A.C., Chu, F.Y.F., and McLaughlin, D.W., (1973), Progress of I.E.E.E. 61, 1443. 18.- Skyrme, T.H., (1961a), Proceedings of the Royal Society of London 260, 127. 19.- Skyrme, T.H., (1961b), Proceedings of the Royal Society of London 262, 236. 20.- Soler, M., (1970), Physical Review D 1, 2766. 21.- Soler, M., (1973), Physical Review D 8, 3424. 22.- Soler, M., (1975), Preprint GIFT 10/75, University of Zaragoza, Spain. 23.- Wakano, T., (1966), Progress of Theoretical Physics 35, 1117. 24.- Weyl, H., (1950), Physical Review 77, 699. 25.- Whitham, C.B., (1974), Linear and nonlinear waves, Chap. 17, Wiley, New York. 26.- Zakharov, V.E., and Kuznetsov, E.A., (1974), Soviet Physics-JETP 39, 285.
dspace.entity.typePublication

Download

Collections