Direct observation of hydrogen permeation through grain boundaries in tungsten

dc.contributor.authorDiaz Rodriguez, Pablo
dc.contributor.authorPanizo Laiz, Miguel
dc.contributor.authorGonzález Pascual, César
dc.contributor.authorIglesias, Roberto
dc.contributor.authorMartin Bragado, Ignacio
dc.contributor.authorGonzález Arrabal, Raquel
dc.contributor.authorPerlado, Jose Manuel
dc.contributor.authorPeña Rodríguez, Ovidio
dc.contributor.authorRivera, Antonio
dc.date.accessioned2024-09-10T17:46:22Z
dc.date.available2024-09-10T17:46:22Z
dc.date.issued2022-01-24
dc.descriptionAWP15-ENR-01/CEA-02 (EUROfusion Consortium) QCM-2017-2-0012 QCM-2017-3-0009 QCM-2019-1-0002 QS-2019-2-0002
dc.description.abstractIn this paper, we report on an enhanced hydrogen permeation effect along grain boundaries in tungsten. Sputtered nanocolumnar tungsten layers (column lateral dimensions 100–150 nm and layer thickness 2 μm) were analysed by hydrogen permeation measurements in the temperature range 520–705 K. The experiments constitute a direct observation of this effect, previously postulated by means of a combination of indirect experiments and simulations and considered controversial due to the lack of direct measurements. DFT results support this observation since (i) the hydrogen binding energy to the grain boundary is 1.05 eV and (ii) the migration energies along the grain boundary and along the bulk are 0.12 eV and 0.20 eV, respectively. OKMC simulations, parametrized by DFT data, were used as a supporting tool to attain a better understanding of the involved phenomena. The OKMC results are also compatible with the observations. Indeed, they show that the fraction of hydrogen flux along grain boundaries in the steady-state permeation regime increases when decreasing the ratio of lateral dimensions to length of the nanocolumns, rapidly approaching unity when this ratio is < 2. Therefore, grain boundaries act as preferential migration pathways for H atoms at the studied temperature range in the studied samples. This behaviour has interesting implications to reduce the retention of hydrogen in several applications, in particular, fusion materials exposed to plasma discharges.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipRed Española de Supercomputación
dc.description.statuspub
dc.identifier.citationDíaz-Rodríguez, P., Panizo-Laiz, M., González, C. et al. Direct observation of hydrogen permeation through grain boundaries in tungsten. emergent mater. 5, 1075–1087 (2022).
dc.identifier.doi10.1007/s42247-021-00344-w
dc.identifier.essn2522-574X
dc.identifier.issn2522-5731
dc.identifier.officialurlhttps://doi.org/10.1007/s42247-021-00344-w
dc.identifier.relatedurlhttps://link.springer.com/article/10.1007/s42247-021-00344-w
dc.identifier.urihttps://hdl.handle.net/20.500.14352/108067
dc.journal.titleEmergent Materials
dc.language.isoeng
dc.page.final1087
dc.page.initial1075
dc.publisherSpringer
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105325RB-C32/ES/FABRICACION, IRRADIACION, CARACTERIZACION Y MODELADO DE NUEVOS MATERIALES PARA FUSION INERCIAL Y MAGNETICA/
dc.relation.projectIDS2018/EMT-4437/TECHNOFUSION
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu539.1
dc.subject.keywordNuclear fusion
dc.subject.keywordDFT simulations
dc.subject.keywordObject kinetic Monte Carlo simulations
dc.subject.keywordHydrogen permeation
dc.subject.keywordTungsten
dc.subject.keywordNanomaterials
dc.subject.ucmFísica nuclear
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleDirect observation of hydrogen permeation through grain boundaries in tungsten
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number5
dspace.entity.typePublication
relation.isAuthorOfPublication192ae654-3ce8-4f13-afe2-70550155b6bf
relation.isAuthorOfPublication.latestForDiscovery192ae654-3ce8-4f13-afe2-70550155b6bf

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Emergent-Materials-2022.pdf
Size:
1.88 MB
Format:
Adobe Portable Document Format

Collections