Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A robust algorithm for the sequential linear analysis of environmental radiological data with imprecise observations

dc.contributor.authorRivero Rodríguez, Carlos
dc.contributor.authorValdés Sánchez, Teófilo
dc.date.accessioned2023-06-20T03:31:04Z
dc.date.available2023-06-20T03:31:04Z
dc.date.issued2011
dc.description.abstractIn this paper we present an algorithm suitable to analyse linear models under the following robust conditions: the data is not received in batch but sequentially; the dependent variables may be either non-grouped or grouped, that is, imprecisely observed; the distribution of the errors may be general, thus, not necessarily normal; and the variance of the errors is unknown. As a consequence of the sequential data reception, the algorithm focuses on updating the current estimation and inference of the model parameters (slopes and error variance) as soon as a new data is received. The update of the current estimate is simple and needs scanty computational requirements. The same occurs with the inference processes which are based on asymptotics. The algorithm, unlike its natural competitors, has some memory; therefore, the storage of the complete up-to-date data set is not needed. This fact is essential in terms of computer complexity, so reducing both the computing time and storage requirements of our algorithm compared with other alternatives.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMEC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20180
dc.identifier.doi10.1002/env.1034
dc.identifier.issn1180-4009
dc.identifier.officialurlhttp://onlinelibrary.wiley.com/doi/10.1002/env.1034/pdf
dc.identifier.relatedurlhttp://www.wiley.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43679
dc.issue.number2
dc.journal.titleEnvironmetrics
dc.language.isoeng
dc.page.final151
dc.page.initial132
dc.publisherWiley
dc.relation.projectIDMTM2004-05776
dc.rights.accessRightsrestricted access
dc.subject.cdu519.22
dc.subject.keywordMaximum-likelihood
dc.subject.keywordcensored-data
dc.subject.keywordem algorithm
dc.subject.keywordconsistency
dc.subject.keywordregression
dc.subject.keywordmodels
dc.subject.keywordalgorithmic estimation
dc.subject.keywordstochastic approximation
dc.subject.keywordlinear model under robust conditions
dc.subject.keywordconditional imputation techniques
dc.subject.keywordasymptotics and simulation studies
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.unesco1209 Estadística
dc.titleA robust algorithm for the sequential linear analysis of environmental radiological data with imprecise observations
dc.typejournal article
dc.volume.number22
dcterms.referencesAn, MY. 1998. Logconcavity versus logconvexity: a complete characterization. Journal of Economic Theory 80: 350–369. Anido, C, Rivero, C, Valdes, T. 2000. Modal iterative estimation in linear models with unihumped errors and non-grouped and grouped data collected from different sources. Test 9: 393–416. Dempster, AP, Laird, NM, Rubin, DB. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society B 39: 1–22. Fahrmeir, L, Kufmann, H. 1985. Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models. Annals of Statistics 13: 342–368. Healy, MJR, Westmacott, M. 1956. Missing values in experiments analysed on automatic computers. Applied Statistics 5: 203–206. James, IR, Smith, PJ. 1984. Consistency results for linear regression with censored data. Annals of Statistics 12: 590–600. Louis, TA. 1982. Finding observed information using the EM algorithm. Journal of the Royal Statistical Society B 44: 98–130. McLachlan GJ, Krishnan, T. 1997. The EM Algorithm and Extensions. Wiley: New York. Meilijson, I. 1989. A fast improvement of the EM algorithm on its own terms. Journal of the Royal Statistical Society B 51: 127–138. Meng, XL, Rubin, DB. 1991. Using EM to obtain asymptotic variance-covariance matrices. Journal of the American Statistical Association 86: 899–909. Orchard, T, Woodbury, MA. 1972. A missing information principle: theory and applications Proceedings of the 6th Berkeley Symposium on Mathematical Statistics Vol. I:697–715. Ritov, Y. 1990. Estimation in linear regression model with censored data. Annals of Statistics 18: 303–328. Rivero, C, Valdes, T. 2004. Mean based iterative procedures in linear models with general errors and grouped data. Scandinavian Journal of Statistics 31: 469–486.
dspace.entity.typePublication
relation.isAuthorOfPublication57155156-5c76-4da2-9777-5ab79884445c
relation.isAuthorOfPublication.latestForDiscovery57155156-5c76-4da2-9777-5ab79884445c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Teofilo03springer.pdf
Size:
226.14 KB
Format:
Adobe Portable Document Format

Collections