Asymptotic behavior of positive radial solutions to elliptic equations approaching critical growth

dc.contributor.authorPardo San Gil, Rosa María
dc.contributor.authorSanJuan, Arturo
dc.date.accessioned2023-06-17T08:57:52Z
dc.date.available2023-06-17T08:57:52Z
dc.date.issued2020-11-18
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/63743
dc.identifier.issn1072-6691
dc.identifier.officialurlhttps://ejde.math.txstate.edu/Volumes/2020/114/pardo.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/7738
dc.issue.number114
dc.journal.titleElectronic Journal of Differential Equations
dc.language.isoeng
dc.publisherTexas State University, Department of Mathematics
dc.relation.projectIDMTM2016-75465; PID2019-103860GBl00
dc.relation.projectIDCADEDIF (920894)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu517
dc.subject.keywordA priori bounds
dc.subject.keywordPositive solutions
dc.subject.keywordSemilinear elliptic equations
dc.subject.keywordDirichlet boundary conditions
dc.subject.keywordGrowth estimates
dc.subject.keywordSubcritical nonlinearites
dc.subject.keywordEcuaciones elípticas semiliniares
dc.subject.keywordCondición límite de Dirichlet
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.ucmAnálisis matemático
dc.subject.unesco12 Matemáticas
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleAsymptotic behavior of positive radial solutions to elliptic equations approaching critical growth
dc.typejournal article
dcterms.references[1] F. V. Atkinson, L. A. Peletier; Emden-Fowler equations involving critical exponents. Nonlinear Anal., Theory, Methods & Applications, 10 (1986), no. 8,755–776. [2] F. V. Atkinson, L. A. Peletier; Elliptic equations with nearly critical growth. J. Differential Equations, 70 (1987), no. 3, 349–365. [3] A. Bahri, J. M. Coron; On a nonlinear elliptic equation involving the critical sobolev exponent: The effect of the topology of the domain. Comm. Pure Appl. Math., 41 (1988), no. 3, 253-294. [4] A. Castro, N. Mavinga, R. Pardo; Equivalence between uniform L2 ?(Ω) a-priori bounds and uniform L∞(Ω) a-priori bounds for subcritical elliptic equations. Topol. Methods Nonlinear Anal., 53 (2019), no. 1, 43–56. [5] A. Castro, R. Pardo; A priori bounds for positive solutions of subcritical elliptic equations. Rev. Mat. Complut. 28 (2015), 715–731. [6] A. Castro, R. Pardo; A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), no. 3, 783–790. [7] L. Damascelli, R. Pardo; A priori estimates for some elliptic equations involving the pLaplacian. Nonlinear Anal., 41 (2018), 475 - 496. [8] D. G. de Figueiredo, P. L. Lions and R. D. Nussbaum; A priori estimates and existence of positive solutions of semilinear elliptic equations. J. Math. Pures Appl. (9), 61 (1982), no. 1, 41–63. [9] W.-Y. Ding; Positive solutions of ∆u + u (n+2)/(n−2) = 0 on contractible domains. J. Partial Differential Equations, 2 (1989), no. 4, 83 - 88. [10] B. Gidas, Wei Ming Ni, L. Nirenberg; Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68 (1979), no. 3, 209–243. [11] Z.-C. Han; Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincar´e Anal. Non Lin´eaire, 8 (1991), no. 2, 159–174. [12] N. Mavinga, R. Pardo; A priori bounds and existence of positive solutions for subcritical semilinear elliptic systems. J. Math. Anal. Appl., 449 (2017), no. 2, 1172–1188. [13] R. Pardo; On the existence of a priori bounds for positive solutions of elliptic problems, I. Revista Integraci´on. Temas de Matem´aticas. 37 (2019), no. 1, 77–111. [14] R. Pardo; On the existence of a priori bounds for positive solutions of elliptic problems, II. Revista Integraci´on. Temas de Matem´aticas. 37 (2019), no. 1, 113–148. [15] S. I. Pohozaev; On the eigenfunctions of the equation ∆u + λf(u) = 0. Dokl. Akad. Nauk SSSR, 165 (1965), 36–39.
dspace.entity.typePublication
relation.isAuthorOfPublicationb61446bc-a011-4f38-9387-63e24d811d3a
relation.isAuthorOfPublication.latestForDiscoveryb61446bc-a011-4f38-9387-63e24d811d3a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
pardo-asymptotic-ejde.pdf
Size:
382.1 KB
Format:
Adobe Portable Document Format

Collections