Asymptotic behavior of positive radial solutions to elliptic equations approaching critical growth
| dc.contributor.author | Pardo San Gil, Rosa María | |
| dc.contributor.author | SanJuan, Arturo | |
| dc.date.accessioned | 2023-06-17T08:57:52Z | |
| dc.date.available | 2023-06-17T08:57:52Z | |
| dc.date.issued | 2020-11-18 | |
| dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.refereed | TRUE | |
| dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN) | |
| dc.description.sponsorship | Universidad Complutense de Madrid | |
| dc.description.status | pub | |
| dc.eprint.id | https://eprints.ucm.es/id/eprint/63743 | |
| dc.identifier.issn | 1072-6691 | |
| dc.identifier.officialurl | https://ejde.math.txstate.edu/Volumes/2020/114/pardo.pdf | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/7738 | |
| dc.issue.number | 114 | |
| dc.journal.title | Electronic Journal of Differential Equations | |
| dc.language.iso | eng | |
| dc.publisher | Texas State University, Department of Mathematics | |
| dc.relation.projectID | MTM2016-75465; PID2019-103860GBl00 | |
| dc.relation.projectID | CADEDIF (920894) | |
| dc.rights | Atribución 3.0 España | |
| dc.rights.accessRights | open access | |
| dc.rights.uri | https://creativecommons.org/licenses/by/3.0/es/ | |
| dc.subject.cdu | 517 | |
| dc.subject.keyword | A priori bounds | |
| dc.subject.keyword | Positive solutions | |
| dc.subject.keyword | Semilinear elliptic equations | |
| dc.subject.keyword | Dirichlet boundary conditions | |
| dc.subject.keyword | Growth estimates | |
| dc.subject.keyword | Subcritical nonlinearites | |
| dc.subject.keyword | Ecuaciones elípticas semiliniares | |
| dc.subject.keyword | Condición límite de Dirichlet | |
| dc.subject.ucm | Matemáticas (Matemáticas) | |
| dc.subject.ucm | Análisis matemático | |
| dc.subject.unesco | 12 Matemáticas | |
| dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
| dc.title | Asymptotic behavior of positive radial solutions to elliptic equations approaching critical growth | |
| dc.type | journal article | |
| dcterms.references | [1] F. V. Atkinson, L. A. Peletier; Emden-Fowler equations involving critical exponents. Nonlinear Anal., Theory, Methods & Applications, 10 (1986), no. 8,755–776. [2] F. V. Atkinson, L. A. Peletier; Elliptic equations with nearly critical growth. J. Differential Equations, 70 (1987), no. 3, 349–365. [3] A. Bahri, J. M. Coron; On a nonlinear elliptic equation involving the critical sobolev exponent: The effect of the topology of the domain. Comm. Pure Appl. Math., 41 (1988), no. 3, 253-294. [4] A. Castro, N. Mavinga, R. Pardo; Equivalence between uniform L2 ?(Ω) a-priori bounds and uniform L∞(Ω) a-priori bounds for subcritical elliptic equations. Topol. Methods Nonlinear Anal., 53 (2019), no. 1, 43–56. [5] A. Castro, R. Pardo; A priori bounds for positive solutions of subcritical elliptic equations. Rev. Mat. Complut. 28 (2015), 715–731. [6] A. Castro, R. Pardo; A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), no. 3, 783–790. [7] L. Damascelli, R. Pardo; A priori estimates for some elliptic equations involving the pLaplacian. Nonlinear Anal., 41 (2018), 475 - 496. [8] D. G. de Figueiredo, P. L. Lions and R. D. Nussbaum; A priori estimates and existence of positive solutions of semilinear elliptic equations. J. Math. Pures Appl. (9), 61 (1982), no. 1, 41–63. [9] W.-Y. Ding; Positive solutions of ∆u + u (n+2)/(n−2) = 0 on contractible domains. J. Partial Differential Equations, 2 (1989), no. 4, 83 - 88. [10] B. Gidas, Wei Ming Ni, L. Nirenberg; Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68 (1979), no. 3, 209–243. [11] Z.-C. Han; Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincar´e Anal. Non Lin´eaire, 8 (1991), no. 2, 159–174. [12] N. Mavinga, R. Pardo; A priori bounds and existence of positive solutions for subcritical semilinear elliptic systems. J. Math. Anal. Appl., 449 (2017), no. 2, 1172–1188. [13] R. Pardo; On the existence of a priori bounds for positive solutions of elliptic problems, I. Revista Integraci´on. Temas de Matem´aticas. 37 (2019), no. 1, 77–111. [14] R. Pardo; On the existence of a priori bounds for positive solutions of elliptic problems, II. Revista Integraci´on. Temas de Matem´aticas. 37 (2019), no. 1, 113–148. [15] S. I. Pohozaev; On the eigenfunctions of the equation ∆u + λf(u) = 0. Dokl. Akad. Nauk SSSR, 165 (1965), 36–39. | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | b61446bc-a011-4f38-9387-63e24d811d3a | |
| relation.isAuthorOfPublication.latestForDiscovery | b61446bc-a011-4f38-9387-63e24d811d3a |
Download
Original bundle
1 - 1 of 1


